
Lecture 5

Processor and Bus

Fetch-Execute Cycle

Processor States

Exceptions and Interrupts

Program Placement in Memory

111.3.2020 Copyright Teemu Kerola 2020

Execution Time Contents of

Processor and Memory

211.3.2020 Copyright Teemu Kerola 2020

Processor, CPU

Bus

memory

Instr. exec. Circuits

Instr. in execution

Hw

registers

(cache)

Code (for

program in

execution)

Data

Operating system

Library routines

Processor Operation

311.3.2020 Copyright Teemu Kerola 2020

Instr fetch

IR ← mem (PC)

Increment

Program Counter

PC ← PC+1

Execute instruction in IR

(may modify PC)

(may cause mem references)

PC=0 init value
start

instruction

fetch-execute cycle

IR = Instruction

Register

PC = Program

Counter

käskyjen nouto-

ja suoritussykli

411.3.2020 Copyright Teemu Kerola 2020

TTK-91 Processor Structure

4

control
signals

internal
bus

LIMITBASE MAR MBRMMU Bus ctl

control bus

PC

IR SR

TRCU

address bus

Data bus

R0

R6

regs

R2

R4

R1

R7

R3

R5

ALU

memory

bus

Break Instruction to Fields, and

Compute Effective Address (EA)

• Fields can be read with special wires from instr. reg (IR)

• Compute EA, result to TR

– Rj: 1st operand and result reg

– if Ri=0, then TR ADDR

– else TR  (Ri)+ADDR
• Do addition in ALU (or some special circuit)
• If ADDR = 0, niin TR  (Ri)

– Now, Effective Address (EA) is in TR

• You can use contents of TR as is, as address of data in
memory, or as indirect address of data in memory

– 2nd operand definition, use M to decide on how TR data is used

511.3.2020 Copyright Teemu Kerola 2020

31 24 21 19 16 15 (bit:) 0

OPER opcode

8 bit field

Rj

3 bit

M

2 bit

Ri

3 bit

ADDR address, constant

16 bit field

Instruction Execution
• Titokone visualization shows phases in simulation

• Store R4, @10(R1) ; R1 =20, R4=15

– Instruction fetch and incrementing PC

• PC → MAR, “bus read”, wait for “mem → MBR”

• MBR → IR

• PC+1 → PC

– E.g., PC → ALU1, 1 → ALU2, +, wait, ALU → PC

– E.g., PC → INCin, wait, INCout→ PC (own circuit)

– Instruction execution phase

• R1 → ALU1, 10 → ALU2, +, (odota), ALU → TR

• TMP → MAR, ”bus read”, wait for “mem→MBR”

MBR → MAR, R4 → MBR, ”bus write”, wait for “MBR→mem”

– Total 3 memory references (this instruction)

611.3.2020 Copyright Teemu Kerola 2020

TTK-91 Machine Code

• Each instruction is 32 bits

• Each instruction has opcode

• How to interpret registers and attribute, depends

on opcode and mode (M)

• Data types:

– 32-bit integer, or raw 32-bit values

– No floating points, characters, booleans, etc

711.3.2020 Copyright Teemu Kerola 2020

Opcode

8 b

Rj

3 b

M

2 b

Ri

3 b

Attribute (constant, addr)

16 b

TTK-91 registers
• 8 general registers (for any type of use)

– Only these registers can be directly referenced (with
read or write ops) in machine instructions

– All calculations (all work) happen with these registers

• only 8 ”memory slots” for actual work

– R0 work register

• If index register Ri==0, it denotes value 0, and not
contents of index register Ri, i.e., ”no indexing”

– R1-R5 work or index registers

• Type depends on where in instr register is used in

• work reg 1st operand, index reg in 2nd operand

– Stack Pointer SP (i.e., R6)

– Frame Pointer FP (i.e., R7)

811.3.2020 Copyright Teemu Kerola 2020

Stack Pointer

Frame Pointer

To implement

subroutines

(not for

ordinary

computational

work)

TTK-91 Control Unit (CU)

• PC - Program Counter (Instruction Pointer, IP)

– Address of next (not current) instruction to execute

• IR - Instruction Register

– Current instruction in execution

• TR - Temporary Register

– Extra storage for data needed for instruction execution

• SR - State Register

– Current processor state and limitations

911.3.2020 Copyright Teemu Kerola 2020

TTK-91 State Register SR
• State info on what happened at the processor

when this or previous instruction(s) was executed
– Errors, exceptions, interrupts

– Machine instruction was supervisor call (SVC)

– Results of comparisons

• State info on what has happened in the system

recently
– Device signals (device interrupts) not yet processed

• State info on what the processor is allowed to do
– Privileged or normal execution state?

• All memory and all instructions allowed, or not?

– Interrupt processing allowed or not?

1011.3.2020 Copyright Teemu Kerola 2020

Ttk-91 State Register SR (9)

1111.3.2020 Copyright Teemu Kerola 2020

SR: GEL OZUM IS P D ????????

GEL = comparison indicators: Greater, Equal, Less
O = arithmetic Overflow

Z = divide by Zero
U = Unknown instruction

M = forbidden Memory address

I = device Interrupt (laitekeskeytys)

S = SVC (supervisor call) palvelupyyntö

P = Privileged mode (etuoik. tila)

D = Interrupts Disabled (kesk. estetty)

32 bits (each has value 0 or 1)

Memory Use for Program P

1211.3.2020 Copyright Teemu Kerola 2020

BASE

0:

iso:

LIMIT

0:

P

Program code

Global variables and

other data structures

Stack to implement

subroutines (includes

local variables)

SP

Heap for dynamically

allocated memory areas

(e.g., Java ”new” oper.)

(not in ttk-91)HP

Free memory

Virtual mem for PPhysical memory

registers

Discuss

Address Translation Mechanisms
for Virtual Memory

• Based on base and limit register pairs

– ttk-91, 8086, ...

• Paging

– Page tables

– Address space divided into same size ”pages”

• Segmenting

– Address space divided into (large?) variable

size ”segments”

• Code segment,

data segment, literal area, heap, stack, …

1311.3.2020 Copyright Teemu Kerola 2020

More

info?
OS
course

More

info?
OS
course

Interrupt Processing
• Interrupts fetch-execute cycle, ”surprise subroutine call”,

moves control to operating system

• Every possible interrupt type is previously known,

i.e., nothing really surprising does not happen!

• For each interrupt type there is specific interrupt handler (subroutine)

in the operating system

• At the end of every fetch-execute cycle the HW checks for any

interrupt existance from SR, and branches to its interrupt handler when

needed.

– Old PC and SR saved, new PC and SR set

– E.g., interrupt type 3: PC  3 tai PC  mem(3)

• physical memory address 3?

– Interrupt processing is sometimes disabled (SR bit D in ttk-91)

– Return from interrupt handler with some special instruction

(e.g., IRET or ”return-from-interrupt-handler”)

• Recover old PC and old SR

1411.3.2020 Copyright Teemu Kerola 2020

Processor Operation

1511.3.2020 Copyright Teemu Kerola 2020

Instr fetch

IR ← mem (PC)

Increment

Program Counter

PC ← PC+1

Execute instruction in IR

(may modify PC)

(may cause mem references)

Check for interrupts

(may modify PC)

PC=0 init value
start

instruction

fetch-execute cycle

IR = Instruction

Register

PC = Program

Counter

Discuss

Interrupt Handlers
• Important part of OS (Operating System)

• Before control moves to interrupt handler, processor state

is set to privileged state (supervisor state, kernel mode)

– SR bit P is on (1)  processor is in privileged state

– In kernel mode the OS can reference all of memory

(MMU: BASE=0, LIMIT=”very big”)

– In kernel mode the OS can use all instructions

• E.g., IRET, ClearCache, ReadBASE, SetBASE,

ReadLIMIT, SetLIMIT, SetD, ResetD, ReadSR, …

• When returning from interrupt handler processor state is

returned back to the one it was originally

– including registers BASE and LIMIT, bit P in SR, etc

1611.3.2020 Copyright Teemu Kerola 2020

Changing CPU Execution State

• User state  Privileged state

– Interrupt or direct supervisor call (SVC instruction)

– Interrupt handler checks

whether state change ok

• Privileged state  User state

– Privileged machine instruction “return from interrupt

handler”, e.g., IRET (Pentium II)

– Returns control and processor state to those before

control was transferred to interrupt handler

1711.3.2020 Copyright Teemu Kerola 2020

user kernel

SVC, INT

IRET

keskeytys-

käsittelijä

Discuss

etuoikeutettu tila

käyttäjätila

”safe” ”everything goes”

Privileged,

supervisor state

Titokone - TTK-91 simulator

• Ordinary program written in Java

• TTK-91 processor/system components as data

structures

– registers, MMU, CU, memory

• Simulate fetch-execute cycle, one instr. at a time

• Includes also parts of operating system

– assembler, loader, debugger, interrupt handlers

• Graphical user interface (UI)

1811.3.2020 Copyright Teemu Kerola 2020

See Processor.java in Titokone code:

titokone.jar\fi\hu\cs\titokone\Processor.java

(http://www.cs.helsinki.fi/group/nodes/kurssit/tito/Processor.java.txt)

http://www.cs.helsinki.fi/group/nodes/kurssit/tito/Processor.java.txt

TTK-91 Fetch-execute Cycle

1911.3.2020 Copyright Teemu Kerola 2020

Fetch instruction from simulated memory

Break instr. into fields (OPER, Rj, M, Ri, ADDR) and

compute initial address to TR (ADDR tai reg[Ri]+ADDR)

Do enough memory references (M) to get 2nd operand to

register TR

Select proper simulation code based on opcode (OPER)

Simulate instruction execution effects into registers

(R0…R7, SR, PC, MAR, MBR)

Stop cycle if SVC or interrupt SR.O = …

ADD Rj, M ADDR(Ri)  reg[Rj] += TR;

IR = mem[PC]

TR = mem[TR]

if (opcodeOK[OPER] = FALSE) then SR.U = 1;

ADDR = IR mod 32768 TR = reg[Ri] +ADDR

Simulator in C: http://www.cs.helsinki.fi/group/nodes/kurssit/tito/simu/simu.c

http://www.cs.helsinki.fi/group/nodes/kurssit/tito/simu/simu.c

Buses

• Each device on the bus has simple address

• One transmits, all listen, only the ”correct”

device will receive and react to it

• Many different buses, hierarchy of buses

• Those close to CPU are faster

2011.3.2020 Copyright Teemu Kerola 2020

8 9 10

1 2

Bus

Bus hierarchy

2111.3.2020 Copyright Teemu Kerola 2020

Fig. 3-50 [Tane99]

Typical mother board

for Pentium II system

PCI to SCSI bridge

In its own

chip, with level

1 cache

Discuss

-- End --

2211.3.2020 Copyright Teemu Kerola 2020

ESKO, 1960.

First ”computer”

built in Finland,

out of date from

the start.

20 additions per

second.

Good learning

experience.

• Program code read from paper tape (10 readers)

• Code and data were not in the same memory!

• Subroutine call implemented with control transfer to

another tape reader (with subroutine code in looped tape)

(Tekniikan museo)

(The musem of technology)

