
Lecture 6

Data representation

Number Systems

Integers, Floating Points

Characters, Strings

Sounds, Images, Other data

Multi-byte data

Programs

Structured data

125.2.2020 Copyright Teemu Kerola 2020

Types of Data

• Types of data for communicating with humans

– Images, videos, sounds, characters, …

• Types of data stored in system

– Integers, floats, characters, strings, booleans

– Programs

– Image and video formats, sound formats, packing standards, ...

• Types of data understood by processor

– There are machine instructions for this type of data

– Integers

– Floats (most processors now)

– Booleans (some processors, not usually)

– Characters or strings (some processors, not usually)

– Machine instructions

225.2.2020 Copyright Teemu Kerola 2020

Data representation

• Question: how to represent various types of data?

• Answer: code them into bits

– All data in system is in bits

• All processed data has its own coding methods

– All coding methods are not standardized

– There may be many coding systems for any type of data

• Integers, floats, characters, strings, images, videos, sounds, …

– Problem: do systems/machines understand each other?

• Data representation may need to be changed, when data is

copied from one system to another

325.2.2020 Copyright Teemu Kerola 2020

Representing Data in System

• All data in in binary bits (0 or 1)

– Binary digits: 0, 1

– Easy to implement in electronic circuits

– Easy to design and optimize logic with Boole’s algebra

• Memory composed of equal size words

– word = 32 bits (earlier 16, 32, 48, or 64 bits, or …)

• Word is composed of equal size (8 bit)

bytes

425.2.2020 Copyright Teemu Kerola 2020

sana

tavu

word

1000 1101 1010 1101 1011 1100 1111 0001

byte byte byte byte

8 D A D B C F 1hex:

bits:

Data Representation for CPU
• All data is coded into bits

• In memory all data can be represented in any coding

system (representation) agreed upon

• Some representations are understood by the processor

(I.e., processor understands them)

– Integers and floating points (almost always)

– Truth values, characters, strings (sometimes)

– Images, videos, sounds (usually not, unless specialized processor)

• Processing other data types is done with software

(i.e., many instructions, subroutine, or method)

– E.g., characters (their encoding) can be processed with integer

instructions or subroutines using them

– Rational numbers, 128-bit integers (?), large arrays, records,

objects, fingerprints, sounds, images, videos, smells, …

525.2.2020 Copyright Teemu Kerola 2020

TTK-91:
integers

Number systems

• From binary to decimal

• From decimal to binary

• From binary to hexadecimal

• From hexadecimal to binary

625.2.2020 Copyright Teemu Kerola 2020

10110011

10110011

179

0xB3 = B3

179

10110011

B3 (tai 0xB3)

10110011

Binary system

• Base 2, digits 0 and 1

– Digit weights from right to left:

1=20, 2=21, 4=22, 8=23, 16=24, 32=25, …

– In decimal system the weights are

1=100, 10=101, 100=102, 1000=103, …

725.2.2020 Copyright Teemu Kerola 2020

1101 10112

1*20

1*21

0*22
1*23

1*24
0*25

1*26

1*27

650910

9* 100

0 * 101

5 * 102
6 * 103

Binary examples (9)

825.2.2020 Copyright Teemu Kerola 2020

0000 0011 = ?

+2

+1

= 310

0101 0101 = ?

+64 +16 +4

+1

= 8510

0011 1001 = ?

+32 +16 +8

+1

= 5710

Binary Part and Binary Point
• Binary numbers may also have a binary part

(fractional part), just like decimal numbers

may have a decimal part

925.2.2020 Copyright Teemu Kerola 2020

1101 1011.101012

1*20

1*21

0*22
1*23

1*24
0*25

1*26

1*27

1*2-3
0*2-4

0*2-2

1*2-1

1*2-5

Binany part examples

1025.2.2020 Copyright Teemu Kerola 2020

0101.101 = ?

+4 +1 +0.5 = 2-1

+0.125 = 2-3

= 5.62510

0110. 0011 = ?

+4 +2

+0.0625 = 2-4

+0.125 = 2-3

= 6.187510

Changes in Number System

Representations

• Base 2 system base 10 system

– Given earlier

• Base 10 system base 2 system

– Do integer and decimal parts separately

– Integer part:

• Divide continuously by 2, until remainder is 0

jäljellä

• Take remainders in reverse order

1125.2.2020 Copyright Teemu Kerola 2020

Decimal Binary

Integer Example (11)

1225.2.2020 Copyright Teemu Kerola 2020

5710 = ? 57/2 = 28 rem 1

28/2 = 14 rem 0

14/2 = 7 rem 0

7/2 = 3 rem 1

3/2 = 1 rem 1

1/2 = 0 rem 1

= 11 10012

= 0011 10012

done

Decimal Binary

Desimal part Binary part

• Multiple decimal part repeatedly by 2, until

– Desimal part = 0 (exact binary part)

– Enough bits for sufficient accuracy

• Result is given by taking the integer parts

(0 or 1) from multiplied decimal parts in

computed order

1325.2.2020 Copyright Teemu Kerola 2020

Decimal Binary

Desimal Part Binary Part example

1425.2.2020 Copyright Teemu Kerola 2020

0.187510 = ? 2 * 0.1875 = 0.375 = 0 + 0.375

2 * 0.375 = 0.75 = 0 + 0.75

2 * 0.75 = 1.5 = 1 + 0.5

2 * 0.5 = 1.0 = 1 + 0.0

done

= 0.00112

= 0.0011000000000000000002

Decimal Binary

Desimal Part Binary Part example 2

1525.2.2020 Copyright Teemu Kerola 2020

0.310 = ? 2 * 0.3 = 0.6 = 0 + 0.6

2 * 0.6 = 1.2 = 1 + 0.2

2 * 0.2 = 0.4 = 0 + 0.4

2 * 0.4 = 0.8 = 0 + 0.8

2 * 0.8 = 1.6 = 1 + 0.6

2 * 0.6 = 1.2 = 1 + 0.2

2 * 0.2 = 0.4 = 0 + 0.4

2 * 0.4 = 0.8 = 0 + 0.8

2 * 0.8 = 1.6 = 1 + 0.6

done

= 0.010011001… 2

= 0.0100110011001100110012 = 0.010012

Hexadecimal Representation

• Binary numbers are necessary, but they are

difficult to read/write for humans

– Too many digits

• Write them down as hexadecimal numbers

• 4 bits is always one hexadecimal digit

• One base 16 number is always 4 bits

• Base 16 digits are:

0,1,2,3,4,5,6,7,8,9, A, B, C, D, E ja F

1625.2.2020 Copyright Teemu Kerola 2020

10 11 12 13 14 15

Hexadecimal Examples

1725.2.2020 Copyright Teemu Kerola 2020

hexa:

0100 0111 1001 1010 1111binary:

4 7 9 A F = 479AF16

= 0004 79AF16 = 0x 479AF

120ADF16
hexa:

binary: 0001 0010 0000 1010 1110 1111

1 2 0 A D F

Big Endian vs. Little Endian
• How to store multibyte data?

– Problem concerns usually only (double) words

1825.2.2020 Copyright Teemu Kerola 2020

0x1200 0x1201 0x1202 0x1203

0x11 0x22 0x33 0x44Big-Endian: most
significant byte to
smallest address

0x44 0x33 0x22 0x11
Little-Endian: least
significant byte to
smallest address

0x1200:

0x1200 0x1201 0x1202 0x1203

store 0x11223344 ?? byte addresses

word address

(smallest byte address)

0x11223344

0x44332211

Integers

• Signed integers

(sign magnitude)

• One’s complement

• Two’s complememt

• Biased representation

– E.g., add 127 (=27 –1)
• Usually add 2nrBits-1 -1

– Store unsigned

1925.2.2020 Copyright Teemu Kerola 2020

-57 = 1100 0111

+1

“sign” bit

+57 = 0011 1001

-57 = 1100 0110

“sign” bit

-57 = 1011 1001

sign bit = MSB

= most significant bit

value repres.

value representation

-57 = 0100 0110

-57 + 127 =70

+57 = 1011 1000

+57+127=184

Positive numbers usually directly binary

Floating Point Values
• Correspond to real numbers in math

• Compromise

– Range vs. accuracy

• Always fixed accuracy

– Same number of significant digits

• Sign, significant digits, magnitude

2025.2.2020 Copyright Teemu Kerola 2020

+5678901.2345678 vs. +5.678901 * 106

-0.000012345678 vs. -1.234568 * 10-5

+111.1010101111 vs. +1.11101011 * 22

IEEE 32-bit FP Standard

• 23 bits for mantissa so that ...

2125.2.2020 Copyright Teemu Kerola 2020

exponent mantissa or significandsign

“+” “15” “0.1875” = “0.0011”

1.1000 “12”

1) Binary point (.) is immediately

after 1st bit (bit 1)

2) Mantissa is normalized:

leftmost bit is one (1)

3)Leftmost (most significant)

bit (=1) is not stored

(it is implied “hidden” bit)

1000 “12”

1/8 = 0.1250

1/16= 0.0625

0.1875

mantissa

0.0011 “15”

24 bit mantissa in

23 bit data field!

M
ik

si
 k

äy
te

tä
än

p
ii

lo
b

it
ti

ä?

1b 8b (+127) 23b
(+0x7F)

eksponent

+6144.010 = +1 1000 0000 0000.02= +0.0011 * 215 = …

0 = ‘+’

1 = ‘-’

biased

+127

2225.2.2020 Copyright Teemu Kerola 2020

IEEE 32-bit FP Values

1.0 = +1.0000 * 20 = ?

exponent

8 bits

mantissa or significand

23 bits

sign

1 bit

0 000 0000 0000 0000 0000 0000

23.0 = +10111.0 * 20 = +1.0111 * 24 =?

exponent

8 bits

mantissa or significand

23 bits

sign

1 bit

0 011 1000 0000 0000 0000 00001000 0011

4+127=131

0111 1111

0+127 = 127 0x3F80 0000

0x41B4 0000

2325.2.2020 Copyright Teemu Kerola 2020

IEEE 32-bit FP Values

exponent

8 bits

mantissa or significand

23 bits

sign

1 bit

0 111 1000 0000 0000 0000 00001000 0000

X = ?

= (1 + 0.5 + 0.25 + 0.125+0.0625) * 2

= (1+ 1/2 + 1/4 + 1/8 + 1/16) * 2

= 1.11112 * 2

= 1.9375 * 2 = 3.875

X = (-1)0 * 1.1111 * 2(128-127)

0x40780000

Discuss

= 11.1112

= 2+1+ 1/2 + 1/4 + 1/8

= 3.875

IEEE Standard, Special Cases

• +/- 0

• +/- ∞

• Quiet NaN

• Signaling NaN

• Very small, not normalized (subnormal) numbers

– Exponent: 2 -126

– Hidden bit: 0

2425.2.2020 Copyright Teemu Kerola 2020

0/1 0000 0000 0…0

0/1 1111 1111 0…0

0/1 1111 1111 1?..?1?..?

0/1 1111 1111 0?..?1?..?

0/1 0000 0000 ??..?1?..?

?..?1?..?

(= not all zeroes)

UCS and Unicode

• UCS - Universal Character Set

• Same chatacter sets, different standards

• 2 bytes (16 bits) per character

– 65536 characters for some 200000 symbols used in the

world

• (32-bit UCS-4 includes also all Chinese characters)

• Control characters

– 0x0000-001F and 0x0080-009F

– 0x007F = DELETE, 0x0020 = SPACE

• UCS has also shorter 8-bit ”lines” of code

– Different regions may have their own 8-bit codes,

e.g., UTF-8

2525.2.2020 Copyright Teemu Kerola 2020

(Character) Strings
• Usually sequential set of bytes

• Need to code length somehow:

– Special character at end (extra byte!)

• C language: ’\0’ = 0x00

– Use record

• Usually not own machine instructions (any more)

• Manipulate with subroutines
• Integer and bit manulation instructions

• Some (older) machine have ”strcopy” and ”strcmp”

instructions

(assuming something about character set: length, bytes/char)

2625.2.2020 Copyright Teemu Kerola 2020

20 ”Usually not any more!”

length string

2725.2.2020 Copyright Teemu Kerola 2020

(Boolean) Truth Values
• Boolean TRUE and FALSE

• Usually encoded as TRUE=1, FALSE=0

– But not always!

– Boolean A and B = Integer A*B

• Often one Boolean value per word

– Remaining 31 bits are zeroes

– Boolean variables in high level languages

• Sometimes packed 32 values per word

• Not own machine instructions, manipulate with bit

manipulation instructions and subroutines

– Bit manipulation instructions are usually for all bits in a

word (byte)

2825.2.2020 Copyright Teemu Kerola 2020

Images
• Many image standards

– GIF, JPEG, TIFF, BMP, ….

– Generality, transportability, packing density

– How much computation needed to unpack and display?

– File header tells, which format is used

• Often packed to optimize space

– Optimized on space (transmission time), and not on

unpacking time?

– Unpacking may take lots of processing time

• Not usually own machine instructions, manipulate

with subroutines and/or display processors

2925.2.2020 Copyright Teemu Kerola 2020

Video image
• Many standards

– MPEG (Moving Pictures Expert Group)

– AVI (Audio Visual Interleave)

– MOV, INDEO, FLI, GL, DVD, ...

• Not usually own machine instructions, manipulate

with subroutines and/or display processors

3025.2.2020 Copyright Teemu Kerola 2020

Sounds
• Two basic approaches

– Perfect sound data

• 44100 samples/sec, 16 b/sample, 88KB /sec

– Synthethized sounds

• MIDI-instructions

– Music Instrument Digital Interface

– ”Play note N with loudness V”

• Not usually own machine instructions, manipulate

with subroutines and/or sound/multimedia

processors

– Sound processor may be integrated with mother board

or display processor

3125.2.2020 Copyright Teemu Kerola 2020

Taste, smell, feel, and other dataa

• Star brightness, boat type, attractiveness, …

• Application dependent implementation, no

standards agreed upon

– Integers (discrete data)

• Boat type? [1, 50]?

– Floating point values (continuous data)

• Attractiveness? [-∞, +∞]?

• No own machine instructions, manipulate with

subroutines

Machine Instructions

• Each processor type has its own

• Instruction are 1 byte or longer

– SPARC, all instructions: 1 word, 4 bytes

– ARM, all instructions: 1 word, 4 bytes

– Pentium II: 1-16 bytes, many variations

• Instructions have 1 or many forms, each with

varying number of fields

– opcode, Ri, Rj, Rk, memory access mode

– Long or short co nstant (integer)

3225.2.2020 Copyright Teemu Kerola 2020

TTK-91, all instructions: 1 word, 1 form

3325.2.2020 Copyright Teemu Kerola 2020

-- End --

• Faggin, Hoff, Mazor

• 1st microprosessor

• Size 3x4 mm, $200

• 2300 transistors

• 4 bit word

• Designed for calculator

• Same computational
power as Eniac
(18000 vacuum tubes)

Intel 4004, 1971

Busicom 141-PF

