
Lecture 6

Data representation

Number Systems

Integers, Floating Points

Characters, Strings

Sounds, Images, Other data

Multi-byte data

Programs

Structured data

125.2.2020 Copyright Teemu Kerola 2020

Types of Data

• Types of data for communicating with humans

– Images, videos, sounds, characters, …

• Types of data stored in system

– Integers, floats, characters, strings, booleans

– Programs

– Image and video formats, sound formats, packing standards, ...

• Types of data understood by processor

– There are machine instructions for this type of data

– Integers

– Floats (most processors now)

– Booleans (some processors, not usually)

– Characters or strings (some processors, not usually)

– Machine instructions

225.2.2020 Copyright Teemu Kerola 2020

Data representation

• Question: how to represent various types of data?

• Answer: code them into bits

– All data in system is in bits

• All processed data has its own coding methods

– All coding methods are not standardized

– There may be many coding systems for any type of data

• Integers, floats, characters, strings, images, videos, sounds, …

– Problem: do systems/machines understand each other?

• Data representation may need to be changed, when data is

copied from one system to another

325.2.2020 Copyright Teemu Kerola 2020

Representing Data in System

• All data in in binary bits (0 or 1)

– Binary digits: 0, 1

– Easy to implement in electronic circuits

– Easy to design and optimize logic with Boole’s algebra

• Memory composed of equal size words

– word = 32 bits (earlier 16, 32, 48, or 64 bits, or …)

• Word is composed of equal size (8 bit)

bytes

425.2.2020 Copyright Teemu Kerola 2020

sana

tavu

word

1000 1101 1010 1101 1011 1100 1111 0001

byte byte byte byte

8 D A D B C F 1hex:

bits:

Data Representation for CPU
• All data is coded into bits

• In memory all data can be represented in any coding

system (representation) agreed upon

• Some representations are understood by the processor

(I.e., processor understands them)

– Integers and floating points (almost always)

– Truth values, characters, strings (sometimes)

– Images, videos, sounds (usually not, unless specialized processor)

• Processing other data types is done with software

(i.e., many instructions, subroutine, or method)

– E.g., characters (their encoding) can be processed with integer

instructions or subroutines using them

– Rational numbers, 128-bit integers (?), large arrays, records,

objects, fingerprints, sounds, images, videos, smells, …

525.2.2020 Copyright Teemu Kerola 2020

TTK-91:
integers

Number systems

• From binary to decimal

• From decimal to binary

• From binary to hexadecimal

• From hexadecimal to binary

625.2.2020 Copyright Teemu Kerola 2020

10110011

10110011

179

0xB3 = B3

179

10110011

B3 (tai 0xB3)

10110011

Binary system

• Base 2, digits 0 and 1

– Digit weights from right to left:

1=20, 2=21, 4=22, 8=23, 16=24, 32=25, …

– In decimal system the weights are

1=100, 10=101, 100=102, 1000=103, …

725.2.2020 Copyright Teemu Kerola 2020

1101 10112

1*20

1*21

0*22
1*23

1*24
0*25

1*26

1*27

650910

9* 100

0 * 101

5 * 102
6 * 103

Binary examples (9)

825.2.2020 Copyright Teemu Kerola 2020

0000 0011 = ?

+2

+1

= 310

0101 0101 = ?

+64 +16 +4

+1

= 8510

0011 1001 = ?

+32 +16 +8

+1

= 5710

Binary Part and Binary Point
• Binary numbers may also have a binary part

(fractional part), just like decimal numbers

may have a decimal part

925.2.2020 Copyright Teemu Kerola 2020

1101 1011.101012

1*20

1*21

0*22
1*23

1*24
0*25

1*26

1*27

1*2-3
0*2-4

0*2-2

1*2-1

1*2-5

Binany part examples

1025.2.2020 Copyright Teemu Kerola 2020

0101.101 = ?

+4 +1 +0.5 = 2-1

+0.125 = 2-3

= 5.62510

0110. 0011 = ?

+4 +2

+0.0625 = 2-4

+0.125 = 2-3

= 6.187510

Changes in Number System

Representations

• Base 2 system  base 10 system

– Given earlier

• Base 10 system  base 2 system

– Do integer and decimal parts separately

– Integer part:

• Divide continuously by 2, until remainder is 0

jäljellä

• Take remainders in reverse order

1125.2.2020 Copyright Teemu Kerola 2020

Decimal Binary

Integer Example (11)

1225.2.2020 Copyright Teemu Kerola 2020

5710 = ? 57/2 = 28 rem 1

28/2 = 14 rem 0

14/2 = 7 rem 0

7/2 = 3 rem 1

3/2 = 1 rem 1

1/2 = 0 rem 1

= 11 10012

= 0011 10012

done

Decimal Binary

Desimal part Binary part

• Multiple decimal part repeatedly by 2, until

– Desimal part = 0 (exact binary part)

– Enough bits for sufficient accuracy

• Result is given by taking the integer parts

(0 or 1) from multiplied decimal parts in

computed order

1325.2.2020 Copyright Teemu Kerola 2020

Decimal Binary

Desimal Part Binary Part example

1425.2.2020 Copyright Teemu Kerola 2020

0.187510 = ? 2 * 0.1875 = 0.375 = 0 + 0.375

2 * 0.375 = 0.75 = 0 + 0.75

2 * 0.75 = 1.5 = 1 + 0.5

2 * 0.5 = 1.0 = 1 + 0.0

done

= 0.00112

= 0.0011000000000000000002

Decimal Binary

Desimal Part Binary Part example 2

1525.2.2020 Copyright Teemu Kerola 2020

0.310 = ? 2 * 0.3 = 0.6 = 0 + 0.6

2 * 0.6 = 1.2 = 1 + 0.2

2 * 0.2 = 0.4 = 0 + 0.4

2 * 0.4 = 0.8 = 0 + 0.8

2 * 0.8 = 1.6 = 1 + 0.6

2 * 0.6 = 1.2 = 1 + 0.2

2 * 0.2 = 0.4 = 0 + 0.4

2 * 0.4 = 0.8 = 0 + 0.8

2 * 0.8 = 1.6 = 1 + 0.6

done

= 0.010011001… 2

= 0.0100110011001100110012 = 0.010012

Hexadecimal Representation

• Binary numbers are necessary, but they are

difficult to read/write for humans

– Too many digits

• Write them down as hexadecimal numbers

• 4 bits is always one hexadecimal digit

• One base 16 number is always 4 bits

• Base 16 digits are:

0,1,2,3,4,5,6,7,8,9, A, B, C, D, E ja F

1625.2.2020 Copyright Teemu Kerola 2020

10 11 12 13 14 15

Hexadecimal Examples

1725.2.2020 Copyright Teemu Kerola 2020

hexa:

0100 0111 1001 1010 1111binary:

4 7 9 A F = 479AF16

= 0004 79AF16 = 0x 479AF

120ADF16
hexa:

binary: 0001 0010 0000 1010 1110 1111

1 2 0 A D F

Big Endian vs. Little Endian
• How to store multibyte data?

– Problem concerns usually only (double) words

1825.2.2020 Copyright Teemu Kerola 2020

0x1200 0x1201 0x1202 0x1203

0x11 0x22 0x33 0x44Big-Endian: most
significant byte to
smallest address

0x44 0x33 0x22 0x11
Little-Endian: least
significant byte to
smallest address

0x1200:

0x1200 0x1201 0x1202 0x1203

store 0x11223344 ?? byte addresses

word address

(smallest byte address)

0x11223344

0x44332211

Integers

• Signed integers

(sign magnitude)

• One’s complement

• Two’s complememt

• Biased representation

– E.g., add 127 (=27 –1)
• Usually add 2nrBits-1 -1

– Store unsigned

1925.2.2020 Copyright Teemu Kerola 2020

-57 = 1100 0111

+1

“sign” bit

+57 = 0011 1001

-57 = 1100 0110

“sign” bit

-57 = 1011 1001

sign bit = MSB

= most significant bit

value repres.

value representation

-57 = 0100 0110

-57 + 127 =70

+57 = 1011 1000

+57+127=184

Positive numbers usually directly binary

Floating Point Values
• Correspond to real numbers in math

• Compromise

– Range vs. accuracy

• Always fixed accuracy

– Same number of significant digits

• Sign, significant digits, magnitude

2025.2.2020 Copyright Teemu Kerola 2020

+5678901.2345678 vs. +5.678901 * 106

-0.000012345678 vs. -1.234568 * 10-5

+111.1010101111 vs. +1.11101011 * 22

IEEE 32-bit FP Standard

• 23 bits for mantissa so that ...

2125.2.2020 Copyright Teemu Kerola 2020

exponent mantissa or significandsign

“+” “15” “0.1875” = “0.0011”

1.1000 “12”

1) Binary point (.) is immediately

after 1st bit (bit 1)

2) Mantissa is normalized:

leftmost bit is one (1)

3)Leftmost (most significant)

bit (=1) is not stored

(it is implied “hidden” bit)

1000 “12”

1/8 = 0.1250

1/16= 0.0625

0.1875

mantissa

0.0011 “15”

24 bit mantissa in

23 bit data field!

M
ik

si
 k

äy
te

tä
än

p
ii

lo
b

it
ti

ä?

1b 8b (+127) 23b
(+0x7F)

eksponent

+6144.010 = +1 1000 0000 0000.02= +0.0011 * 215 = …

0 = ‘+’

1 = ‘-’

biased

+127

2225.2.2020 Copyright Teemu Kerola 2020

IEEE 32-bit FP Values

1.0 = +1.0000 * 20 = ?

exponent

8 bits

mantissa or significand

23 bits

sign

1 bit

0 000 0000 0000 0000 0000 0000

23.0 = +10111.0 * 20 = +1.0111 * 24 =?

exponent

8 bits

mantissa or significand

23 bits

sign

1 bit

0 011 1000 0000 0000 0000 00001000 0011

4+127=131

0111 1111

0+127 = 127 0x3F80 0000

0x41B4 0000

2325.2.2020 Copyright Teemu Kerola 2020

IEEE 32-bit FP Values

exponent

8 bits

mantissa or significand

23 bits

sign

1 bit

0 111 1000 0000 0000 0000 00001000 0000

X = ?

= (1 + 0.5 + 0.25 + 0.125+0.0625) * 2

= (1+ 1/2 + 1/4 + 1/8 + 1/16) * 2

= 1.11112 * 2

= 1.9375 * 2 = 3.875

X = (-1)0 * 1.1111 * 2(128-127)

0x40780000

Discuss

= 11.1112

= 2+1+ 1/2 + 1/4 + 1/8

= 3.875

IEEE Standard, Special Cases

• +/- 0

• +/- ∞

• Quiet NaN

• Signaling NaN

• Very small, not normalized (subnormal) numbers

– Exponent: 2 -126

– Hidden bit: 0

2425.2.2020 Copyright Teemu Kerola 2020

0/1 0000 0000 0…0

0/1 1111 1111 0…0

0/1 1111 1111 1?..?1?..?

0/1 1111 1111 0?..?1?..?

0/1 0000 0000 ??..?1?..?

?..?1?..?

(= not all zeroes)

UCS and Unicode

• UCS - Universal Character Set

• Same chatacter sets, different standards

• 2 bytes (16 bits) per character

– 65536 characters for some 200000 symbols used in the

world

• (32-bit UCS-4 includes also all Chinese characters)

• Control characters

– 0x0000-001F and 0x0080-009F

– 0x007F = DELETE, 0x0020 = SPACE

• UCS has also shorter 8-bit ”lines” of code

– Different regions may have their own 8-bit codes,

e.g., UTF-8

2525.2.2020 Copyright Teemu Kerola 2020

(Character) Strings
• Usually sequential set of bytes

• Need to code length somehow:

– Special character at end (extra byte!)

• C language: ’\0’ = 0x00

– Use record

• Usually not own machine instructions (any more)

• Manipulate with subroutines
• Integer and bit manulation instructions

• Some (older) machine have ”strcopy” and ”strcmp”

instructions

(assuming something about character set: length, bytes/char)

2625.2.2020 Copyright Teemu Kerola 2020

20 ”Usually not any more!”

length string

2725.2.2020 Copyright Teemu Kerola 2020

(Boolean) Truth Values
• Boolean TRUE and FALSE

• Usually encoded as TRUE=1, FALSE=0

– But not always!

– Boolean A and B = Integer A*B

• Often one Boolean value per word

– Remaining 31 bits are zeroes

– Boolean variables in high level languages

• Sometimes packed 32 values per word

• Not own machine instructions, manipulate with bit

manipulation instructions and subroutines

– Bit manipulation instructions are usually for all bits in a

word (byte)

2825.2.2020 Copyright Teemu Kerola 2020

Images
• Many image standards

– GIF, JPEG, TIFF, BMP, ….

– Generality, transportability, packing density

– How much computation needed to unpack and display?

– File header tells, which format is used

• Often packed to optimize space

– Optimized on space (transmission time), and not on

unpacking time?

– Unpacking may take lots of processing time

• Not usually own machine instructions, manipulate

with subroutines and/or display processors

2925.2.2020 Copyright Teemu Kerola 2020

Video image
• Many standards

– MPEG (Moving Pictures Expert Group)

– AVI (Audio Visual Interleave)

– MOV, INDEO, FLI, GL, DVD, ...

• Not usually own machine instructions, manipulate

with subroutines and/or display processors

3025.2.2020 Copyright Teemu Kerola 2020

Sounds
• Two basic approaches

– Perfect sound data

• 44100 samples/sec, 16 b/sample, 88KB /sec

– Synthethized sounds

• MIDI-instructions

– Music Instrument Digital Interface

– ”Play note N with loudness V”

• Not usually own machine instructions, manipulate

with subroutines and/or sound/multimedia

processors

– Sound processor may be integrated with mother board

or display processor

3125.2.2020 Copyright Teemu Kerola 2020

Taste, smell, feel, and other dataa

• Star brightness, boat type, attractiveness, …

• Application dependent implementation, no

standards agreed upon

– Integers (discrete data)

• Boat type? [1, 50]?

– Floating point values (continuous data)

• Attractiveness? [-∞, +∞]?

• No own machine instructions, manipulate with

subroutines

Machine Instructions

• Each processor type has its own

• Instruction are 1 byte or longer

– SPARC, all instructions: 1 word, 4 bytes

– ARM, all instructions: 1 word, 4 bytes

– Pentium II: 1-16 bytes, many variations

• Instructions have 1 or many forms, each with

varying number of fields

– opcode, Ri, Rj, Rk, memory access mode

– Long or short co nstant (integer)

3225.2.2020 Copyright Teemu Kerola 2020

TTK-91, all instructions: 1 word, 1 form

3325.2.2020 Copyright Teemu Kerola 2020

-- End --

• Faggin, Hoff, Mazor

• 1st microprosessor

• Size 3x4 mm, $200

• 2300 transistors

• 4 bit word

• Designed for calculator

• Same computational
power as Eniac
(18000 vacuum tubes)

Intel 4004, 1971

Busicom 141-PF

