
Lecture 8

Program Implementation in System
Operating System

Process

Process implementation

Operating system (OS)

OS processes

I/O implementation with

device drivers

125.2.2020 Copyright Teemu Kerola 2020

Process = Program in System
• System may have ”at the same time” many

processes from the same or different programs

– User (human) point of view and time scale

(1 min, 1 sek, 10 ms)

• The processor has in execution only one process

at a time

– Assume: 1 core processor

– Hardware (processor, system) point of view and time

scale (1 ns, 1 µs, 1 ms)

• All other processes are waiting for something

– Processor? I/O? Message from another process?

– Available memory space?

22/25/2020 Copyright Teemu Kerola 2020

Process

32/25/2020 Copyright Teemu Kerola 2020

Controller

Disk

Processor

Memory

program P

program Q

process P1

process P2

process Q1

Data
- programs
- OS

process P3
Program
codes

Bus

Most data for P2 is

still in memory.

Some may be on disk.

registers

process P2

Process switch
• Changing the process executing on the processor

• Happens quite often (in human time scale)

– E.g., every 2000-3000 machine instruction executed?

– E.g., 50-500 time per sec? Every 10 ms?

– Why?

• Current process cannot continue execution

• Current process does not want to continue execution

• OS decides, that it is time to change executing

process

– After OS got to execute via some interrupt

• Big operation – lots of copying data

– How many instructions are needed?

42/25/2020 Copyright Teemu Kerola 2020

50-500?

0?

prosessin

vaihto

5-state Prosess Model

• 5 states of a process

– When does any give state change happen?

– What event causes the state change?

– What happens in the state change?

– Who continues execution after the state change?

52/25/2020 Copyright Teemu Kerola 2020

new,

create

removed

or killed

ready-to-run

waiting

running

Discuss

Process Descriptor (PCB)

• Process id

• Priority for processor scheduling

• Process state and/or reason for waiting

• Processor context, saved while waiting

– Work registers R0-R5, SP, FP, state registers, …

– PC (address of next instr to execute)

• Prosess switch occurs when this is set

• Interrupt handler addresses (unless default)

• Time slice (after which time loser CPU turn)

• Used memory areas, open files

• OS admin data (compute time, cpu time, etc.)

62/25/2020 Copyright Teemu Kerola 2020

14023

initially

main {}

143

R-to-R

Discuss

Process

Control

Block

suoritin

ympäristö

aika-

viipale

prosessin

kuvaaja

Processes in Queues

72/25/2020 Copyright Teemu Kerola 2020

1056 01881766

0036 98787654Disk1

R-to-R

0555Timer

2222Msg from 1345

Scheduling:

select next process from Ready-to-Run queue and

move (dispatch) it to execute in CPU

(copy the processor context of selected process to CPU registers)

Running

Process 9878

descriptor (PCB)

waiting

never

empty!

Process Switch
• Done by an OS routine executing in currently running

process (e.g., called from interrupt handler)

• Save processor context of previous process to its PCB in

memory (with normal memory store instructions?)

– Registers, also PC (execution continues from here, if continues)

– No need to do, if previous process is going to be terminated

• Load processor context of new process from its PCB

– Load all (processor context) registers, last one is PC

• Execution of new process continues exactly where it was

interrupted (or from 1st instruction if new process)

– Same machine instruction, same execution environment

– Usually in the middle process switch OS routine, which was called

from interrupt handler

– Next return from OS services and interrupt handler, and proceed

with normal computation

82/25/2020 Copyright Teemu Kerola 2020

Process Priority
• Process importance in processor (not for I/O, e.g.)

– E.g., small number large (better) priority

(or vice versa)

• Each priority (class) has its own R-to-R queue
– OS processes have higher priority than user processes

– Real time processes have higher priority than OS

processes

• They must give OS some time to do its work!

• Priority may vary during process life time
– Lots of CPU time lower priority

– Long time in R-to-R queue higher priority

• Process is moved to higher priority R-to-R queue?

92/25/2020 Copyright Teemu Kerola 2020 Discuss

Operating System (OS)

• HW-independent application interface to HW

– Makes it easier to use HW

– Give fair service to all

– Resource management and
control

– Applications are easier to
implement and port elsewhere

• Resource management

– See next slide

102/25/2020 Copyright Teemu Kerola 2020

HW

HW-dependent

level

HW-independent

level

Applications

OS

Resource Management and Control
• Process management, processor scheduling

– Schedule CPU fairly, no-one waits forever

– Critical processes are scheduled to run in time

• Memory management

– How much main memory to each process?

– Which memory areas are allocated to which process?

– Easy use of shared memory areas and good data protection

• File management

– HW and location independent use of files and devices

– Easy use of shared files and good data protection

• Network management

– HW independent use of networks

– Easy use and good data protection

112/25/2020 Copyright Teemu Kerola 2020

OS Structure

• Process management

• Memory management

• File management

• Device management

• Network management

1225.2.2020 Copyright Teemu Kerola 2020

OS Implementation

• Set of processes and/or subroutines

– Processes live their own lives

• User level process

• Privileged process, root-process

• E.g., device driver

– Subroutines are executed interrupted process’s
environment (in privileged state?)

• E.g., interrupt handler, device driver

– Get control whenever needed

• Subroutine calls, SVC, viestit

• Timers and other interrupts

• OS does nothing, unless code for it is in execution!

132/25/2020 Copyright Teemu Kerola 2020 Discuss

daemon

windows service

Return from OS Service

• Subroutine calls

– CALL → RETURN

• SVC

– SVC → IRET

• Messages

– message → reply message

(sender waits for reply in RECEIVE op)

• Timers and other interrupts

– interrupt → IRET

(next to execute is the interrupted process,

or the process selected by scheduler)

142/25/2020 Copyright Teemu Kerola 2020

Explicit

OS-service request

Implicit

OS-service request

OS Example: Device Driver

• As a privileged subroutine (procedure)
– Device driver is executed as an OS routine

(called with SVC) in privileged state

• Only one call in execution at a time?
How can you supervise it?

– What if process switch at this point?

152/25/2020 Copyright Teemu Kerola 2020

application process

(user state)

device driver

subroutine

(privileged)

iret

OS Example: Device Driver (contd)
• As a partly privileged subroutine

– Device driver is executed as an OS routine (called with
CALL) partly in privileged state

• Part or all of the code may be privileged

• Only one call in execution at a time?
How can you supervise it?

162/25/2020 Copyright Teemu Kerola 2020

application process

return iret

privileged partuser part

Discuss

device driver

subroutine

(partly privileged)

?

OS Example: Device Driver (contd)
• As a process

– Device driver stub call as a subroutine sends I/O
request as a message to the device driver process and
waits for reply

• Stub may be is user state

• Driver may be (partly) privileged

• Based on IPC (Inter-Process Messaging)

172/25/2020 Copyright Teemu Kerola 2020

application

process driver stub driver process
msg

msg

Why is it no problem, if many calls happen at the same time?

-- End --

• Williams Tube

– 1946, Williams & Kilburn

– Cathode Ray Tube (CRT)

– First large ”RAM” memory

– expensive: $1000 / tube / month

– Small Scale Experimental

Machine (”Baby”), 1947

– Ferranti Mark I, 1st general use

commercial computer system,

1951 (10000 bit memoryi)

1825.2.2020 Copyright Teemu Kerola 2020

Tom
Kilburn
holding
a
Cathode
Ray Tube

Storing 2048 bits on
a CRT in 1947

