
Lecture 9

External Memory
I/O

Memory hierarchy

File system

Hard disk (HDD)

SSD, NVMe

I/O implementation with
device driver and device

controller

14/8/2020 Copyright Teemu Kerola 2020

Memory hierarchy
• External memory (HDD, SSD)

is much cheaper per byte

• External memory is much
slower than main memory

• Time/space optimization
– Large data set must be (usually) kept in external memory

because of cost

– Small data set must be kept in main memory for speed

• All referenced data at execution time must be in main
memory or even closer to processor
– Processor cannot wait very long time for referenced data

– Main memory is (somewhat) ok, external memory is too far

• Cache makes main memory feel faster than it is
24/8/2020 Copyright Teemu Kerola 2020

Fig 4.1 [Sta16]

Virtual Memory
• Part of memory hierarchy

• Answer to problem
– How to implement memory, that is ”as large” as disk

(HDD, SSD, NVMe) and ”as fast” as main memory?

• Two level solution
– Main memory has all memory

areas ”currently needed”

– Disk has all data

– Copy when needed
• Page fault interrupt

(referenced data is
not in main memory)

34/8/2020 Copyright Teemu Kerola 2020

memory

disk

controller

bus

cpu

Virtual Memory Implementation
• Implementation methods

– Paging, multi-level paging
– segmentation, segmented paging

• Most of implementation is in OS software
• Address translation: virtual address → main mem address

– Many machine instructions and memory references…

• Copying data: main memory ↔ disk
• Memory management, which memory areas in use

• Hardware assistance
– In MMU (memory management unit)

– Translation Lookaside Buffer (TLB) has most recent address
translations (one type of cache)

• Virtual address to main memory address translation is fast,
if it is found from TLB

44/8/2020 Copyright Teemu Kerola 2020

More
info?

Operating
Systems

File System
• Part of OS, manages all files

• Checks for access rights when file opened

• Changes textual file names to physical addresses

• Keeps (OS) data structures, from which you can see which
part of which file each process is accessing

• File systems reads and writes files in larger blocks
(e.g., 2-8 KB or 2-8 MB)

– User level processes may have byte access to files, and
they do not need to know exact structure of files
(OS device driver takes care of it)

54/8/2020 Copyright Teemu Kerola 2020

read
write
execute

Storing Files on Disk
• File consists of many blocks

– block = 1 or more disk sector

• File’s directory entry
– All blocks for each file

– Blocks are read in given order

64/8/2020 Copyright Teemu Kerola 2020

block
block

block block

FileA

directory
entry block

index

Smallest data
segment in disk
to read/write

Disk usage

74/8/2020 Copyright Teemu Kerola 2020

Memory

pagepagepagepagepage
(data)

Disk VM secondary mem Files

• As secondary memory for
virtual memory

• To store files

pagepagepagepagepage
(file)

lohkolohkolohkoblock
sivusivusivupage

sivusivusivupage

Bus

Hard Disk (HDD) Access Time
• Block address: surface + track + sector

– Device driver finds from file system
OS-tables

84/8/2020 Copyright Teemu Kerola 2020

Fig 6.2 [Sta16]

Discuss

• Access time
– Search + rotation + data transfer

SSD and NVMe

• SSD
– Some kind of flash circuit (e.g.)

– Usually: OS sees it as another hard disk

• NVMe: OS sees it as flash memory
– Faster, OS can utilize concurrency within implementation

• Blocks and pages
– Files (e.g.) as 4 KB pages

– Read/write (e.g.) as 512 KB blocks

• Whole block must be written at a time

• Writing may be to another new block

• Each hw-block could have limit on nr of writes(e.g., 100K)

– Spare blocks on circuit?

94/8/2020 Copyright Teemu Kerola 2020

Solid State Disk Non-Volatile Memory Express
(NVMe, NVM Express)

Device Controller (I/O Module)

104/8/2020 Copyright Teemu Kerola 2020

processorMemory

bus

device

device driver
OS process
(or subroutine?)

device

See Fig 7.3 [Sta16]

controller

data c/s

device
controller
process

user process

device

118.4.2020 Copyright Teemu Kerola 2020

cpu

mem

[Sta16]

I/O Implementation with I/O Instructions:
Reference Device Controller Registers

with Specific Machine Instructions

• I/O operation recognized from the opcode
– I/O devices have their own machine instructions
– I/O instructions have their own address space, they do not

reference main memory

• I/O instructions have device controller id and device
register nr (own I/O address space)

• Hard to extend use to new devices that may have different
device registers (device memory referenced via bus)

• Machine instructions cannot be modified (in general)

124/8/2020 Copyright Teemu Kerola 2020

Ttk-91:
IN, OUT

x86: IN, OUT
INS, OUTS

I/O konekäskyt

I/O Implementation with Memory-Mapped I/O:
Reference Device Controller Registers

with Ordinary Read/Write Memory Instructions

• I/O-operation is recognized from memory
address that was used (and not from opcode)

• Device driver reads/writes device registers (data, status, control) on
device controller with ordinary memory read/write operations

– No need for separate I/O instructions

– Device registers in device controller are
similar memory as “normal” main memory

– 1st bits in memory address determine, whether normal memory or
device registers in some device controller is referenced

• Part (half?) of memory space is reserved to I/O devices

134/8/2020 Copyright Teemu Kerola 2020

load R1, =1 ; read
store R1, @ptrCtr

ptrCtr DC 0x80000001 ; control register address
ptrStat DC 0x80000002 ; status register address
ptrData DC 0x80000003 ; data register address

muistiinkuvattu I/O

I/O types
• Programmed I/O

– Device driver is active all the time

– Device driver waits in busy-wait loop for the device controller

– Data travels via CPU register, one word at a time

• Interrupt driven I/O
– Device driver can do I/O interrupts

– Device driver waits in suspended state for the device controller

– Data travels via CPU register, one word at a time

• DMA I/O
– Device driver can also reference main memory

– Device driver waits in suspended state for the device controller

– Data travels via memory bus only once on its way from memory
to/from device controller data register

– Tasks given to device controller are larger
144/8/2020 Copyright Teemu Kerola 2020

mem cpu

dev ctlr
Direct I/O

Indirect I/O

Direct Memory Access I/O

suora I/O

epäsuora I/O
keskeyttävä I/O

DMA I/O

158.4.2020 Copyright Teemu Kerola 2020

Device driver

Input of a
Block of data

Programmed I/O

Direct I/O

Interrupt driven I/O DMA I/O

Fig 7.4 [Stal16]

Discuss

busy wait

Example: Printer Device Driver for
ttk-91

• You can print integer numbers one at a time

• Memory mapped I/O, direct I/O

• Device port
– Control register memory location 1048576 = 0x80000

– State register memory location 1048577 = 0x80001

– Data register memory location 1048578 = 0x80002

• Device driver Print operates in privileged mode
– Can reference registers in device port

• Call:

164/8/2020 Copyright Teemu Kerola 2020

PUSH SP, =0 ; space for return value
PUSH SP, X ; parameter to print
SVC SP, =Print ; returns Success/Failure
POP SP, R1
JNZER R1, TakeCareOfTrouble

Device Driver Print
Implementation (12)

174/8/2020 Copyright Teemu Kerola 2020

ptrCtr DC 1048576 ; control register address
ptrStat DC 1048577 ; status register address
ptrData DC 1048578 ; data register address
retVal EQU -3
parData EQU -2

Print PUSHR SP ;save regs
LOAD R1, parData(FP)
STORE R1, @ptrData ; data to print
LOAD R1, =0
STORE R1, @ptrStat ; init (clear) state register
LOAD R1, =1
STORE R1, @ptrCtr ; give command to print

Wait LOAD R1, @PtrStat ; check state register
JNZER R1, Done
JUMP Wait ; wait until I/O done

Done LOAD R1, =0 ; return ”Success”
STORE R1, retVal(FP)
POPR SP ; recover regs
IRET SP, =1

Solution with no timeout

Assume: SVC & IRET
implem. ”same way”
as CALL and EXIT

1

0

200

ptrCtl

ptrStat

ptrData

1

See: driver.k91

http://www.cs.helsinki.fi/group/nodes/kurssit/tito/esimerkit/driver.k91
Discuss

-- End--
• Ferrite ring (core) technology

– 1952, Jay Forrester & Bob Everett, MIT (Whirlwind)
– Data sustained without power
– Not disturbed by radiation (space and military technology)
– 1955, conquers main memory markets from Williams Tube
– Used still in 1970’s
– Now only the name (”core”) remains and is still in use

184/8/2020 Copyright Teemu Kerola 2020

