Lecture 9
External Memor

I/

Memory hierarchy
File system
Hard disk (HDD
SSD, NVMe

[/O implementation with
device driver and device
controller

HE0
15
e
e

4

¢

4/8/2020 Copyright Teemu Kerola 2020

' Memory hierarchy

'+ External memory (HDD, SSD)
1s much cheaper per byte

External memory 1s much
slower than main memory

Time/space optimization

— Large data set must be (usually) kept in external memory
because of cost

— Small data set must be kept in main memory for speed

All referenced data at execution time must be 1n main
memory or even closer to processor

— Processor cannot wait very long time for referenced data
— Main memory is (somewhat) ok, external memory is too far

e Cache makes main memory feel faster than it 1s
4/8/2020 Copyright Teemu Kerola 2020

Virtual Memory

* Part of memory hierarchy

* Answer to problem

— How to implement memory, that 1s ”as large™ as disk
(HDD, SSD, NVMe) and “as fast” as main memory?

 Two level solution

— Main memory has all memory memory
areas ~currently needed” I

— Disk has all data bus

— Copy when needed I

» Page fault interrupt controller
(referenced data is
not in main memory)

4/8/2020 Copyright Teemu Kerola 2020

. Virtual Memory Implementation
'+ Implementation methods
— Paging, multi-level paging
— segmentation, segmented paging
e Most of implementation 1s in OS software
* Address translation: virtual address — main mem address
— Many machine instructions and memory references...
* Copying data: main memory <> disk
* Memory management, which memory areas in use
« Hardware assistance
— In MMU (memory management unit)

— Translation Lookaside Buffer (TLB) has most recent address
translations (one type of cache)

 Virtual address to main memory address translation is fast,
if 1t 1s found from TLB

More Q Operating
info? T Systems

4/8/2020

File System

read

Part of OS, manages all files write

Checks for access rights when file opened SAECULE
Changes textual file names to physical addresses

Keeps (OS) data structures, from which you can see which
part of which file each process 1s accessing

File systems reads and writes files in larger blocks
(e.g., 2-8 KB or 2-8 MB)

— User level processes may have byte access to files, and
they do not need to know exact structure of files
(OS device driver takes care of it)

4/8/2020 Copyright Teemu Kerola 2020

Storing Files on Disk

 File consists of many blocks

— block = 1 or more disk sector

 File’s directory entry
— All blocks for each file

— Blocks are read 1n given order

directory
entry

FileA |,

N

Smallest data
X

segment in disk
to read/write

-l

e
__—

block

* Fagd)
2 | el
. 4y
- el
' L‘: - | 4
Tos (g * s
N kg

block

4
_

Copyright Teemu Kerola 2020

Disk usage

* As secondary memory for

virtual memory

 To store files

%econdary mem

R

B

N~

4/8/2020 Copyright Teemu Kerola 2020

Hard Disk (HDD) Access Time

 Block address: surface + track + sector

— Device driver finds from file system
OS-tables Fig 6.2 [Stal6]

Sectors Tracks

Read/write head (1 per surface) Direction of Inter-sector gap

arm motion :
—_— Inter-track gap

Ik

Surface 9

Platter —————»

Surface 8
Surface 7

e Access time
— Search + rotation + data transfer

Surface 0

F 313

4/8/2020 Copyright Teemu Kerola 2020 Discuss

SSD and NVMe

Solid State Disk Non-Volatile Memory Express

(NVMe, NVM Express)
SSD

— Some kind of flash circuit (e.g.)
— Usually: OS sees it as another hard disk

« NVMe: OS sees it as flash memory

— Faster, OS can utilize concurrency within implementation

* Blocks and pages

— Files (e.g.) as 4 KB pages
— Read/write (e.g.) as 512 KB blocks
 Whole block must be written at a time
« Writing may be to another new block
* Each hw-block could have limit on nr of writes(e.g., 100K)
— Spare blocks on circuit?

4/8/2020 Copyright Teemu Kerola 2020

Device Controller (I/0O Module)

4/8/2020

Memory

04-

processor

— USCT ProcCcss

— device driver

04-

bus

data || c/s
device QO

controller "

/
device

controller
process

Copyright Teemu Kerola 2020

OS process
(or subroutine?)

See Fig 7.3 [Stal6]

Interface to Interface to
System Bus External Device

~A

Data

Status

Status/Control Registers Control

Copyright Teemu Kerola 2020

SR et | o Tyt i Ayt
s gl o g gl s gy W

[/O Implementation with I/O Instructions:
Reference Device Controller Registers
with Specific Machine Instructions

. . I/O konekaskyt
* [/O operation recognized from the opcode

— 1/O devices have their own machine instructions
— I/0O mstructions have their own address space, they do not
reference main memory
I/O 1nstructions have device controller 1d and device
register nr (own I/O address space)

Hard to extend use to new devices that may have different
device registers (device memory referenced via bus)

Machine instructions cannot be modified (in general)

x86: IN, OUT Ttk-91:
INS, OUTS IN, OUT

i ' 4/8/2020 Copyright Teemu Kerola 2020

I[/O Implementation with Memory-Mapped 1/O:
Reference Device Controller Registers
with Ordinary Read/Write Memory Instructions

[/O-operation is recognized from memory muistiinkuvattu I/O
address that was used (and not from opcode)

Device driver reads/writes device registers (data, status, control) on
device controller with ordinary memory read/write operations

load R1,=1 ;read
store R1, @ptrCtr

— No need for separate I/0O instructions

— Device registers in device controller are
similar memory as ‘“normal” main memory

— 1st bits in memory address determine, whether normal memory or
device registers in some device controller 1s referenced

 Part (half?) of memory space is reserved to I/O devices

ptrCtr DC 0x80000001 ; control register address
ptrStat DC 0x80000002 ; status register address
ptrData DC 0x80000003 ; data register address

TR
2 :'.;‘l’=

] . 4 Argt s b

vameroy 4/8/2020
* b | s

! e

I/ O type N suora [/O

Programmed [/O [Direct /O | |

.

[|
Cth’ Qo

— Device driver is active all the time
— Device driver waits in busy-wait loop for the device controller

— Data travels via CPU register, one word at a time

Interrupt driven I/O [Indirect1/O epasuora I/O
— Device driver can do I/O interrupts keskeyttava I/0

— Device driver waits in suspended state for the device controller

— Data travels via CPU register, one word at a time
DMA /O Direct Memory Access I[/O DMA I/O

— Device driver can also reference main memory

— Device driver waits in suspended state for the device controller

— Data travels via memory bus only once on its way from memory
to/from device controller data register

— Tasks given to device controller are larger
4/8/2020 Copyright Teemu Kerola 2020

T _Pr;_qgr:dmmed I/0 Interrupt driven I/0 DMAI/O

IES“@ Rf:-ad ISS“ﬁ Rﬁad Issue Read
command to command to ; cthi block command
1/0 module == to /O module

Read status Read status ~ = = Interrupt Read status
of /O of DMA
module 0 — CPU

MNext instruction
Error

condition condition

(c) Direct memory access

Read word Read word
from [/O from [/O
Module Module

Device driver

Write word Write word
fTito ST O into memorv ICEU. — memory ln put Of a
S oo Block of data

Fig 7.4 [Stal16]

MNext instruction Next instruction

Direct I/0 (b) Interrupt-driven /O

Copyright Teemu Kerola 2020 Discuss

Example: Printer Device Driver for
ttk-91

You can print integer numbers one at a time
Memory mapped I/O, direct I/O

Device port
— Control register memory location 1048576 = 0x80000
— State register memory location 1048577 = 0x80001
— Data register memory location 1048578 = 0x80002

Device driver Print operates in privileged mode

— Can reference registers in device port

Call: PUSH SP,=0 space for return value
PUSH SP, X ; parameter to print
SVC SP, =Print ; returns Success/Failure
POP SP, RI1

JNZER R1, TakeCareOfTrouble

Cha 4/8/2020

Device Driver Print

ptrCtr DC 1048576 ; control register address :
: Implementation (12

ptrStat DC 1048577 ; status register address
= ptrData DC 1048578 ; data register address Solution with no timeout

ret\gl EQS -; Print PUSHR SP ;save regs
parData EQU - LOAD RI1, parData(FP)
STORE RI1, @ptrData ; data to print

" Assume: SVC & IRET LOAD “R1,=0 " ,
i - - STORE RI1, @ptrStat ; init (clear) state register
. 1mplem. “same way TOAD RI_=1

as EALL and EXIT STORE R1, @ptrCtr ; give command to print

| Wait LOAD RI1, @PtrStat ; check state register
JNZER RI1, Done

- {ptrCtl —
ptrStat —{| 1 JUMP Wait ; wait until 1/O done

ptrData— LOAD RI1,=0 ; return ’Success”
— STORE RI1, retVal(FP)

Eha : POPR SP ; Fecover regs

[iz

 t
SRRl
O

Discuss

: http://www.cs.helsinki.fi/group/nodes/kurssit/tito/esimerkit/driver.k91

-- End--

* Ferrite ring (core) technology

1952, Jay Forrester & Bob Everett, MIT (Whirlwind)

Data sustained without power

Not disturbed by radiation (space and military technology)
1955, conquers main memory markets from Williams Tube

— Used still in 1970’s
— Now only the name (”core”) remains and is still in use

BEADING WIRE

¢

4/8/2020 Copyright Teemu Kerola 2020

