
Lecture 10

Compilation, Linking and
Loading

From program to process

Compilation unit

Compilation phases

Macros, literals

Static and dynamic linking

14/8/2020 Copyright Teemu Kerola 2020

From High Level Language (HLL) Program
to Executable Process

24/8/2020 Copyright Teemu Kerola 2020

Run module
addresses: linear (per program),

partly unknown(?)

Link
with other
modules
and library
modules

prog

myprog.exe

Object module
Compiled module (machine lang)
addresses: linear (per module)

Compile
from HLL

prog.o

math.l

myprog.obj

Compilation unit
HLL program module
addresses: symbolic

Process
Executable program
addresses: linear (virt. addr. space?)

Load to
memory as
executable
process

prog.c

myprog.c

Object Module
• Code in machine language

– Memory references within module complete
(in modules own linear address space)

– References external to module are marked

• For linking:
– Relocation table. Info on those addresses, that must be

updated when this module address space is linked to
another

– Info on references outside this module

– Info on locations in this module that can
be referenced to from outside

– Symbol table

34/8/2020 Copyright Teemu Kerola 2020

IMPORT

EXPORT

uudelleensijoitustaulu

SYMBOL TABLE

Symbol table

• What is the value of each symbol?
– Static value can (also) be memory address

in modules current address space

• Compiler will generate, linker may update

• Sometimes kept up also after loading for smarter
run time error messages
– Software development environments keep up symbol

table all the time

• Usually left out of finished product (program)
– Takes space, not needed in normal execution

44/8/2020 Copyright Teemu Kerola 2020

Macro
• Often repeated code sequence, helps programming

– No environment, just code
• May include call-by-name parameters
• Processed before compilation

– Part of symbolic assembly language or HLL
– Not part of machine language
– Used macro is replaced by its body

• Example usage
– Subroutine prolog and epilog
– Compiler macros, programmer’s own macros

• Differences to subroutines
– Use time (before compilation vs. execution time)
– Call/return, amount of code, cost of use

54/8/2020 Copyright Teemu Kerola 2020 Discuss

Literals
• In HLL all large

constants are literals
– Compiler should prevent changing literal values

– One should not pass literals as
call-by-reference parameters

• Subroutine could change its value?

• Some symbolic assembly languages have implicit
(automatic) literal definitions
– Easily writable/readable code
– E.g., automatic space allocation to 234567

64/8/2020 Copyright Teemu Kerola 2020

Load R14, =F’234567’

FortranX: 5 = 6;

N := 35000; var myStr = ”literal"

Java string?

LOAD R1, six
STORE R1, five ???

Definition of symbol F’234567’:
F’234567’ ≡ “address of memory
location with value 234567”

tmp1 dc 35000
load r1, tmp1
store r1, N

Assembly Language Compilation
• 0th pass – process macros – generate code from them

• 1st pass (of all code)
– Calculate space requirements for all code

– Start to generate relocation tables (symbol table, etc)

• 2nd pass
– Generate object module
– Complete relocation tables
– Give error messages
– May be combined to 1st pass, but usually not

• 3rd pass
– Code generation, code optimization
– May be combined to 2nd pass
– Print listing of program in symbolic assembly language

74/8/2020 Copyright Teemu Kerola 2020

koodin läpikäynti

Discuss

HLL Compilation (Translation)
• More phases

– Search for syntactic elements
• Generate and parse syntax tree

– Recognize statements with syntax tree

– Generate intermediate language (not always) IL

– Code optimization

– Code generation
• Not (always) for Java-programs

84/8/2020 Copyright Teemu Kerola 2020

(back end)

(front end)

More
info?

Courses on Compilers and
Programming Languages

Program in IL, symbol tables

BEGIN 123.45 IF (

P-code, bytecode, …

Linking

94/8/2020 Copyright Teemu Kerola 2020

Fig. B.12 [Stal16]

• Relocation constant (RC)

– A: 0, B: L, C: L+M

• Add RC to all local
reference addresses

• Set references between
modules correct

• Consider the RC
of referenced module

0

0

0

L

M

N

uudelleensijoitusvakio

L

L+M

0

Static and Dynamic Linking
• Static linking

– All references to other modules and library modules are
solved (linked) before loading (and execution)

– Large load module
• Includes modules that are never referenced during single

execution

• Dynamic linking
– Calls to dynamically linked modules are left open

(not linked, unsolved)
– Small load module, but possibly slow to run
– All references to unsolved module is solved at run time

• Pause execution
• Link dynamically missing module
• Continue

– E.g., many OS libraries, game levels 5-30, …

104/8/2020 Copyright Teemu Kerola 2020 Discuss

Loading
• Load module is used to build executable process

(Build PCB, allocate memory and other resources)

• Process code and data areas are copied to memory, and
process is moved to Ready-to-Run queue

• Different types

– Absolute – mem location remains static

– Relocatable – change mem location some times
(e.g., after being swapped out to disk)

• When and how do you change mem ref addresses?

– Dynamic – mem location changes dynamically at run
time

• When and how do you change mem ref addresses?

114/8/2020 Copyright Teemu Kerola 2020

-- End --
• Transistor

– J. Bardeen,
W.B. Shockley ja
W. Brattain,
Bell Labs, 1948

– TX-0, MIT, 1956

– One of most important
20th century technology
inventions in the world?

• Integrated circuit (no more wires!)
– Jack Kilby, Texas Instruments, 1958

– Robert Noyce, Fairchild
Semiconductor, 1959

– IBM S/360, 1964

124/8/2020 Copyright Teemu Kerola 2020

1st IC (Kilby)

Nobel
1956

Nobel
2000

