
Lecture 11

Interpretation and Emulation

Executing Java programs

Java bytecode

JVM

Interpretation

Java-processor

Compilation

JIT-compilation

JVM vs. ttk-91

12/25/2020 Copyright Teemu Kerola 2020

compi-

lation,

JIT-

compi-

lation

tulkit-

semi-

nen

Java

pro-

ces-

sor

Executing

Java

Programs

22/25/2020 Copyright Teemu Kerola 2020

k = i+j; Java program

Java
bytecode

Compile to bytecode

Java virtuaalikone

Java
tulkki

Pentium II
processor

(for example)

SW

HW

(JIT)
Compil.

Pentium II
processor

load
module SW

HW

instr

Java
processor

iload i
iload j
iadd
istore k

code

native system

SW

HW

iload i
iload j
iadd
istore k

tavukoodi

inter-

preta-

tion

Java Virtual Machine (JVM)

• Hypothetical processor, implemented in various ways

• Generic. ”Easy” to emulate with all real processors

– Execution based on compilation or interpretation

• Many threads can be in execution concurrently

– Alternating or simultaneously on multiple cores

• Data structures

– JVM “registers”, memory blocks, etc

– Created when JVM is started

• Instruction

– JVM (symbolic) machine instructions

– 226 instructions

32/25/2020 Copyright Teemu Kerola 2020

JVM data Structures

• JVM stack

– Like ordinary activation record stack

– Consists of multiple frames (activation records)

and operand stack

– Use: only push/pop operations for frames

also push/pop operations for operand stack elements

– No need for shared memory area

– Allocated from heap

– Finite size or dynamically extendable (based on

implementation)

• Out of space StackOverflowError, OutOfMemoryError

42/25/2020 Copyright Teemu Kerola 2020

http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

Figs 4-8, 4-9, 4-10 [Tane13]

kehys

625.2.2020 Copyright Teemu Kerola 2020

Fig 4-9 [Tane13]. Stacks (2)

Use of an operand stack (not registers) for doing

an (e.g., integer) arithmetic computation.

Discuss

LOAD

iLOAD 2

ADD

iADD

STORE

iSTORE 0

Fig 4-10 [Tane13]

725.2.2020 Copyright Teemu Kerola 2020

The various parts of the IJVM memory.

JVM Data Structures (contd)
• JVM heap

– Shared for all threads in one JVM

– Automatic garbage collection

• Unused (implicitly deallocated) memory is made

available for reuse (free)

• No need for special free operation in Java programs

• May slow down execution at any time

(problem in real time systems)

– Finite size or dynamically extendable from native

system heap (based on implementation)

• Out of space OutOfMemoryError

82/25/2020 Copyright Teemu Kerola 2020

keko

roskien keruu

JVM:n tietorakenteet (jatkuu)

• JVM Method Area

– Shared for all threads in one JVM

– Corresponds to ordinary code segement

– Logically part of JVM heap

– Finite size or dynamically extendable from native

system heap (based on implementation)

• Out of space OutOfMemoryError

92/25/2020 Copyright Teemu Kerola 2020

Fig. 4-10 [Tane13]

JVM Data Structures (contd)

• Java runtime constant pool

– For each class and each interface

– Execution time representation for

class constant_pool table

– Corresponds somewhat to symbol table

– Many different constants (compilation time literals,

attributes to be solved at execuition time, etc)

– Saved in JVM method area

– Out of space OutOfMemoryError

102/25/2020 Copyright Teemu Kerola 2020

Fig. 4-10 [Tane13]

vakioallas

JVM Data Structures (contd)

• Native Method Stacks

– Implementation may use ordinary stacks

(”C stacks”) to support such native methods that are not

written in Java

– Used also to implement Java Interpreter

– Not in JVM implementations without non-native

methods

– Finite size or dynamically extendable (based on

implementation)

• Out of space StackOverflowError, OutOfMemoryError

112/25/2020 Copyright Teemu Kerola 2020

JVM Data Structures (contd)

• JVM registers

– PC points somewhere in JVM method area

– CPP points to current constant pol

– LV is the base address for local variables

(vs. FP in ttk-91)

– SP points to the top of JVM operand stack

– All registers are implicit, they are not named in JVM

machine instructions

1225.2.2020 Copyright Teemu Kerola 2020

Fig. 4-10 [Tane13]

JVM Data Structures (contd)

• JVM frame

– Saved in JVM stack, created with method call,

deallocated on method exit

– All local data structures

– Parameters, return value, intermediate results

– Implementation tool for dynamic linking

– Implementation tool for interrupts/exceptions

132/25/2020 Copyright Teemu Kerola 2020

Figs 4-12, 4-13 [Tane13]

kehys, raami

1425.2.2020 Copyright Teemu Kerola 2020

Fig 4-12 [Tane13]

The IJVM Instruction Set (2)

• Memory before executing INVOKEVIRTUAL.

• After executing it.

1525.2.2020 Copyright Teemu Kerola 2020

Fig 4-13 [Tane13]

The IJVM Instruction Set (3)

• Memory before executing IRETURN.

• After executing it.

JVM Frame Data

• All local variables

(and other local data structures)

– References are indexes (0, 1, 2, …) relative to LV

– Indexes refer to words

– Two word variable (long, double) is placed into two

adjacent (32 bit) words

– big-endian storage

• The operand stack containing parameters, return

value, and intermediate results

– SP points to top of stack

– Stack architecture (vs. register architecture)

162/25/2020 Copyright Teemu Kerola 2020

Fig. 4-13 [Tane13]

JVM Data Reference Modes (4)

• Immediate operand

• Indexed operand

• Stack operand(s)

• Array reference

via stack

172/25/2020 Copyright Teemu Kerola 2020

iINC 2 34 Java: xLoc += 34;

iADD

Replace two integers on
top of stack with their sumFig. 4-9 [Tane13]

Java: a1 = a2+a3;

iINC 2 34
Effective mem addr
(LV) + 2

Replace array starting
address and index in stack
with array element value

Java: a = T[i];

aLOAD 1

iLOAD 2

iALOAD

iSTORE 3

Discuss

JVM Instructions
• Basic arithmetics

– add, sub, mul, div, rem, neg

• Boolean

– and, or, xor, shl, shr, ushr

• Stack ops

– dup, pop, swap, create arrays, repres changes

• Load/Store

– load, aload, store, astore, push instructions

• Comparisons

• Control transfers

• Other

182/25/2020 Copyright Teemu Kerola 2020

Fig. 4-11 [Tane13]

1925.2.2020 Copyright Teemu Kerola 2020

Fig 4-11 [Tane13]

The IJVM Instruction Set (1)

The IJVM instruction set. The operands byte, const, and varnum

are 1 byte. The operands disp, index, and offset are 2 bytes.

2025.2.2020 Copyright Teemu Kerola 2020

Fig 4-11 [Tane10], Compiling Java to IJVM (1)

a) A Java fragment.

b) The corresponding Java assembly language.

c) The IJVM program in hexadecimal.

Discuss

Java Interpreter

• Emulate JVM machine language
(byte code) instructions

• One (byte code) instruction at a
time

• JVM registers and memory areas
implemented as interpreter data
structures in memory

– Compare to Titokone and ttk-91

• Slow, but flexible

212/25/2020 Copyright Teemu Kerola 2020

iload 1
iload 2
iadd
istore 3

Pentium II
processor

Java
interpreter

data

JMV: stack, heap,

method area,

constant pool,

registers, etc.

Interpreter

can be called

JVM !!

Compile to Native System

• (a) Compile byte code directly to

target system native machine

language and execute it normally

• (b) Compile byte code first to

HLL (e.g., C), which is then

compiled with standard compiler

to native machine language

– First part is relatively easy

– Last part exists already

• Problem: no dynamic linking

222/25/2020 Copyright Teemu Kerola 2020

iload 1
iload 2
iadd
istore 3

Pentium II
processor

dl load
module

com-
pile

data

Different

ways to

implement

compilation

JIT Compilation
• JIT = Just-in-Time

• Emulate and/or compile depending on

situation

• Compile Java class to dynamically

linkable module in native machine

language and link it, but only just before

class method is called (1st time?)

• Need lots of memory

• May slow down execution (compared to

interpretation) if compilation and linking

takes more time than interpretation

– Use interpretation if only called once?

– Compile only on 2nd call time?

• JVM registers and memory areas

implemented as interpreter data structures

which are also used by native code

232/25/2020 Copyright Teemu Kerola 2020

iload i
iload j
iadd
istore k

Pentium II
processor

dl load
module

JIT
compi-
lation

data

Java
interpreter

Java Processor:

Sun PicoJAVA II
• Processor definition for a system where byte code

programs can be executed as is

• Elective cache and floating point processor

• All 226 JVM machine instructions

– Some machine instructions implemented as subroutines

which are activated via interrupts

• Also 115 other machine instructions to effectively

implement operating systems and (other)

programming language compilers

– C and C++

242/25/2020 Copyright Teemu Kerola 2020

PicoJAVA II Stack

• 64 (cache-) device register JVM to
store top of JVM stack

– Rest of JVM stack is in memory

252/25/2020 Copyright Teemu Kerola 2020

memory

registers

(cache)
64

Shawn Lauzon,
Survey of the JavaChip

PicoJAVA II Registers

• 25 registers á 32 bits

– PC, LV, CPP, SP (stack grows to smaller addresses)

– OPLIM lower limit for SP; reference below causes
(stack overflow) interrupt

– FRAME points to return address stored after local vars

– PSW (status register)

– Register to manage top of stack special registers

– 4 registers to manage interrupts and break points

– 4 registers to manage threads

– 4 registers for implementation of C and C++ programs

– 2 bounds registers to define current memory segment

– CPU version number and configuration registers

262/25/2020 Copyright Teemu Kerola 2020

PicoJAVA Extra Instructions

• Read/write for extra registers

• Pointer manipulation instructions

– Any memory location can be directly referenced

– Needed for C/C++

• C/C++ subroutine calls and returns

• Native HW manipulation

– Clear cache (partly? Completely=), ...

• Other instructions

– power on/off, ...

272/25/2020 Copyright Teemu Kerola 2020

Other Java-suorittimia
• JEM (Rockwell Collins)

• PSC1000 (Patriot Scientific)

– dSys (Germany), medical devices

• MJ501 (LG Semicon)

– TV, smart cards

• JSR-001, Real-Time Specification
for Java (Java Community Process,
”Sun Microsystems”)

– aJile: aJ-80, aJ-100,
smart mobile devices

• Komodo, SHAP, jHISC, Cjip,

ARM926EJ-S, ObjectCore, …

2925.2.2020 Copyright Teemu Kerola 2020

TTK-91 Emulation

• TTK-91 emulation

• Part of Titokone

• Emulate one ttk-91 machine

instruction at a time

• TTK-91 registers and memory

emulated as data structures in

Titokone

322/25/2020 Copyright Teemu Kerola 2020

TTK-91
Emulator

Pentium II
processor

load R1, 234
add R1, =5
mul R1, R2

data

See simulator code, project Titokone
http://www.cs.helsinki.fi/group/nodes/kurssit/tito/2012s/Interpreter.java

http://www.cs.helsinki.fi/group/nodes/kurssit/tito/2012s/Processor.java

Discuss

http://www.cs.helsinki.fi/group/nodes/kurssit/tito/2012s/Interpreter.java
http://www.cs.helsinki.fi/group/nodes/kurssit/tito/2012s/Processor.java

-- End --
• Cache (1965, Maurice

Wilkes)
– IBM S/360 Model 85

• 1968

• 256 lohkoa á 64 tavua

332/25/2020 Copyright Teemu Kerola 2020

