
 Hewlett Packard, 2000 HP Architecture Template Page 1 of 38
All rights reserved.

A Template for Documenting Software and Firmware
Architectures

Version 1.3, 15-Mar-00

Michael A. Ogush, Derek Coleman, Dorothea Beringer

Hewlett-Packard Product Generation Solutions
mike_ogush@hp.com

derek_coleman@hp.com
dorothea_beringer@hp.com

Abstract

This paper defines a template for producing architectural documentation. Two different kinds of
architectural documentation are identified: an architectural overview and an architecture reference
manual. The template specifies a common structure for both kinds of document and illustrates its use
with examples. The focus of the template is on the logical view of a system including system
purpose, system context and interface, structure of the system, and dynamic behavior of the system.
Other system views like process view, physical view, or conceptual framework view of the problem
domain are also integrated. The template is intended for use in product development for defining the
architecture of software and firmware projects.

Key words: software architecture, document template, components, interfaces, scenarios.

 Hewlett Packard, 2000 HP Architecture Template Page 2 of 38
All rights reserved.

Table of Content

Table of Content ... 2

1. Overview.. 3

2. The Role and Content of Architectural Documentation.. 3

3. Template for Architectural Documentation.. 5

3. 1 Introduction Section... 5

3.2 System Purpose Section.. 6

3.2.1 Context Section.. 6

3.2.2 System Interface Section .. 7

3.2.3 Non-Functional Requirements Section ... 8

3.3 Structure Section.. 10

3.3.1 Overview Section... 10

3.3.2 Components Section .. 14

3.3.3 Interfaces Section .. 16

3.4 Dynamic Behavior Section ... 19

3.4.1 Scenarios Section .. 19

3.4.2 Mechanisms Section .. 23

3.5 Other Views Section ... 25

3.5.1 Process View Section... 25

3.5.2 Development View Section... 26

3.5.3 Physical View Section.. 26

3.6 Conceptual Framework Section ... 27

3.7 Conclusion Section... 29

4. Conclusion and Acknowledgments...30

5. References ..30

Appendix A: Outline Summary ...31

Appendix B: Conformance to the IEEE Recommendation for Architectural Description....................................33

Appendix C: Glossary..35

 Hewlett Packard, 2000 HP Architecture Template Page 3 of 38
All rights reserved.

1. Overview
In recent years a realization has grown of the importance of software architecture. According to Bass et al
[1], the software architecture of a system is the structure or structures of the system, which comprise
software components, the externally visible properties of those components, and the relationships among
them. The IEEE recommendation [2] defines an architecture as the fundamental organization of a system
embodied in its components, their relationships to each other and to the environment and the principles
guiding its design and evolution. Software architectures are important because they represent the single
abstraction for understanding the structure of a system and form the basis for a shared understanding of a
system and all its stakeholders (product teams, hardware and marketing engineers, senior management, and
external partners).

This paper tackles the problem of how an architecture should be documented. It is a meta-document that
defines a template for producing architectural documentation. As such it defines how to document purpose,
concepts, context and interface of a system, how to specify system structure in terms of components, their
interfaces, and their connections, and how to describe system behavior. Although the paper uses the term
software architecture throughout, the template has proven to be also applicable to firmware architectures
with little or no modification.

The structure and content for an architectural description is given in section three of this paper. Each
subsection of section three describes the form and content of a section of an architecture document. Thus
section 3.1 of this template describes what information should be given in the Introduction section of an
architecture document; section 3.2 describes the Purpose section of an architecture document etc. Most
explanations are accompanied by examples taken from a (fictitious) architecture document for CellKeeper
network management system [3].

A summary of the structure of an architecture document is given in appendix A. Appendix A is the ideal
starting point for everybody who wants to get a quick overview of the various elements of the architecture
template.

Section two of this paper discusses the different contents, purposes and readerships for architectural
documentation and how that affects the use of the template. Appendix B shows how the architecture
template presented here relates to the IEEE Draft Recommended Practice for Architectural Description.
Appendix C contains a glossary of important terms.

2. The Role and Content of Architectural Documentation

Architectural overview and architectural reference manual

The template can be used to produce two different kinds of architectural documentation, an architectural
overview and an architectural reference manual.

An architectural overview is aimed at providing a shared understanding of the architecture across a broad
range of people including the developers, marketing, management and possibly potential end-users. An
architectural overview is ideally produced early in the development lifecycle and serves as the starting
point for the development. An architectural overview should be at a high level of abstraction. All the major
functionalities and components of the architecture should be described but the descriptions may lack detail
and precision as they often use natural language rather than formal notations.

An architectural reference manual describes an architecture in a detailed and precise manner. Unlike an
architectural overview, an architectural reference manual is not written at one particular point in time.
Rather a reference manual should be a living document that is constructed collaboratively by the
development team as the development proceeds. As it develops the reference manual can be used to track
progress of the software development and for assessing the impact of proposed requirements changes.
When complete the reference manual is the basis for system maintenance and enhancements. The reference
manual should be updated as changes occur so it always reflects the actual architecture.

 Hewlett Packard, 2000 HP Architecture Template Page 4 of 38
All rights reserved.

A reference manual needs to be complete in the sense that every facet of the architecture should be
documented. Although a reference manual will tend to be detailed and technical in nature the level of
abstraction and precision is likely to vary across the architecture and across different projects. The
architecture within very large grained components should be documented in separate architectural reference
manuals for the components. The level of completeness, formality, detail and precision used for any
particular aspect of the architecture will depend on the associated technical or business risk.

Scoping

Not every architecture documentation requires all the sections described in this template. Appendix A gives
a summary of all the sections and shows which ones are optional. Yet even for the mandatory sections the
amount of information documented not only varies between architectural overview and architectural
reference manual, but also from project to project. The introduction section of the architecture document
lists the stakeholders and their concerns. An architecture document is complete as soon as the concerns of
the stakeholders are met.

Views covered by the architecture template

The template has been structured according to the 4 views of the 4+1 view model of Kruchten [4]: the
logical view is modeled in the structure section and the dynamic behavior section, the process view, the
physical view and the development view are modeled in the other views section.

For each view the structure of the components and the dynamic behavior, i.e. scenarios showing the
interactions of the components, are modeled. For the process, physical and development view this is done
in the process, physical, or development view sections. For the logical view, it is split up into two sections:
the structure section and the dynamic behavior section. Of course, the dynamic models in the different
views must be consistent. They can be looked at as the integrating force between the various views.

Logical View
ð Structure Section

ð Physical View Section

Physical View

ð Dynamic
Behavior Section

Scenarios

ð Process View Section

Process View

Development View

ð Development View
Section

Figure 1: 4+1 View Model

 Hewlett Packard, 2000 HP Architecture Template Page 5 of 38
All rights reserved.

3. Template for Architectural Documentation
Sections 3.1 to 3.7 describe the structure and content of an architecture document. For each section of such
a document it provides a description of the structure, an explanation and, in all non-trivial cases, an
example. The following notational convention is used:

• Syntactic structure of each part of the section is shown diagrammatically in a figure with
yellow background (e.g. Figure 2), or as a table (e.g. Table 1).

• The normal text gives explanations of the content of each section.

• Examples are shown in figures with a double edge (e.g. Figure 4).

Figure 2 shows the top-level structure of an architecture document. Each box names a section of the
document and briefly describes its purpose.

Architecture
Document

<Title>

< Structure><Introduction> <System
Purpose>

author, creation
date, modification
etc

problem
description,
system interface,
non-functional
requirements

architectural
overview, logical
components and
interfaces

(vI)(v) (vIi)

(ii)(i) (iii)

<Conclusion>

limitations of the
architecture, open
issues

<Conceptual
 Framework>

concepts needed
for understanding
architecture

<Mapping
Logical to Other
Views Section>

mapping logical
components to
processes, files
and hardeware
nodes

(iv)

<Dynamic
Behavior>

how the
architecture
works

Figure 2: Sections of an architecture document

The following chapters discuss the structure and content of each section of the architecture document.

3. 1 Introduction Section

The introduction section identifies the architecture and its stakeholders, and it records the creation and
subsequent modification to the architecture documentation. Details to be captured include:

• name of the architecture
• architecture design team and author of the architecture document with information on who to

contact to provide feedback for the architecture and its documentation
• creation and modification history
• audience and purpose
• selected viewpoints
• related documents

 Hewlett Packard, 2000 HP Architecture Template Page 6 of 38
All rights reserved.

As part of the introduction, the architecture document should state whether the document is an architectural
overview or a reference manual, who the stakeholders and the intended readers are, and what the intended
purposes of the document are. It should also record the relationship to any other documents associated with
the development of the software, e.g. System Requirements Specification, System Architecture
Specification, Design Specification, Internal Reference Specification, etc. Optionally1, the selected
viewpoints (see appendix B) can be listed together with the stakeholders, and the issues addressed by each
viewpoint, and a list of the sections of the architecture document containing descriptions and models for the
selected viewpoints.
When there is a single product associated with the architecture this section may optionally contain
information regarding the project/product using the architecture like project name, release date, project
team, or product team.

3.2 System Purpose Section

This section documents the system in terms of its purpose and the problem that it solves. It describes the

• context in which the system will be used and the problem(s) that it solves,
• the services, i.e. functionality, that the system provides at its interfaces, and
• the qualitative characteristics of these services.

The system purpose section provides a black box view of the system to be designed. The system must
satisfy the requirements as defined in any valid system requirements document. If for any reason there are
requirements which are not met by the system, then these must be explicitly recorded. Normally, the system
purpose section gives a summary of the specifications concerning context, system interface and non-
functional requirements contained by any system requirements specification documents. 2

System
Purpose

<Non-functional
requirements>

<Context> <System
Interface>

problem description,,
including context of

problem

services provided by
the system

qualities, constraints,
principles that

architecture supports

(ii)(i) (iii)

Figure 3: System purpose section

3.2.1 Context Section

This section briefly and informally describes the context of the system and the problem that it solves.

The aim is to provide an introduction to the system that is accessible to non-domain experts. The problem
description should enumerate the key entities involved with the system and how the system provides value
to them. The focus of this section is on the entities interested in and communicating with the system, and on
the roles of these entities, not on the system itself.

1 Needed for conformity with IEEE Recommended Practice for Architectural Description
2 Depending on purpose and audience of the architecture documentation, the system purpose section can simply contain
references to the appropriate sections in requirements specification documents,
- if a system requirements specification contains the same information or models as required for the sections

“Context”, “System Interface” and “Non-Functional Requirements”,
- if such system requirements documentation is maintained and updated during the life of the system,
- and if these documents are readily available to the audience of the architecture documentation.

 Hewlett Packard, 2000 HP Architecture Template Page 7 of 38
All rights reserved.

In order to describe the problem solved by the system it is necessary to delineate the boundary between the
system and its environment. It is sometimes also helpful to show the larger context of which the system is
part of, inclusive associations and data flows between other systems. The context diagram can be one of
the following:

- an object or class diagram showing the system under consideration, other systems interacting with
this system or otherwise valuable for understanding the context, and all important associations,

- a high-level use case diagram showing the system, its actors3, and the most important use cases,

- a data flow diagram showing the data and control flows between the system and other entities in its
environment (as in Figure 4).

Example
CellKeeper Purpose and Context

Mobile phones are controlled by a network of cells that manage the call traffic on radio frequencies. These cells are
responsible for covering a geographic area, knowing about adjacent cells, and handing over calls to other cells when
the signal quality is reduced due to movement of the mobile phone.

CellKeeper is an application that can manage the configuration of a network of cells. E.g., when there is an increased
need for capacity of the network, a operator can interact with CellKeeper to split an existing cell into multiple cells.
Also, CellKeeper can download new parameters to an individual cell (cell frequencies, exclusive use of cell by phones
for emergency purposes only, etc.).

Operator Cellular_
network

cellkeeper
network

management
system

Planning
department

network updates

projected results of changes

results of changes

cell changes

results of changes

Mailserver

notifications of success
 or failure of changes

information about the network

Context Dataflow Diagram of the CellKeeper System

Figure 4: Example CellKeeper: system context with a data flow diagram

3.2.2 System Interface Section

The system interface section documents the services that the system provides in terms of responsibilities.
Often the system interface may be organized into a set of sub-interfaces, each sub-interface corresponding
to a distinct usage of the system, e.g. there may be specific interfaces for system configuration, for normal
system use, and for system management.

Interfaces may be defined at varying levels of detail and precision. In an architectural overview document
the system interfaces will be described at a very high level of abstraction with optionally simply listing
individual system operations or use cases4 (see example in Figure 5). In an architectural reference manual

3 An actor is any active entity in the environment of the system that interacts with the system.
4 A use case consists of several steps and interactions between one or several external actors and the system in order to
achieve a specific goal. If on a given abstraction level the steps of a use case are not further decomposed, then the steps
are considered as being system operations. In contrast to use cases, a system operation only has one input interaction on

 Hewlett Packard, 2000 HP Architecture Template Page 8 of 38
All rights reserved.

all the use cases or system operations of an interface will be listed and given a short description, and their
possible order is specified (for details concerning the documentation of system interfaces in architecture
reference manuals see section 3.3.3. about documenting component interfaces). The detailed behavioral
specification for each use case or system operation will be given in section 3.4.

Example
CellKeeper Operator Interface

Interface CellKeeper Operator Interface

Operator Changing Network Session: This service allows the operator to
change cell frequencies, browse cell parameter values, remove and add new
cells. Changes to the network are usually not instantaneous but scheduled to
happen when there is little network traffic, e.g. in the early hours of the morning.
If an update fails then the network is rolled back to its previous state.

System operations of this use case: Enter_changes (operator enters changes
that are transmitted to cellular network), Change_implemented (cellular network
notifies CellKeeper system about successful or unsuccessful application of
changes)

Network Types Updates: This service allows the Operator to add new cell
types to the network …

Use Cases

…

Figure 5: Example CellKeeper: one of the system interfaces in an architectural overview document

3.2.3 Non-Functional Requirements Section

This section documents a summary of those requirements that address aspects of the system besides
functionality and that are relevant for the system architecture5. Non-functional requirements can be divided
into three types:

1. Qualities – These are qualities of service (e.g. performance, throughput, usability, security, etc.) or
qualities of development of the system (e.g. maintainability, supportability, portability, etc.). Often the
terms used to describe qualities are subject to interpretation. The documentation of qualities here
should summarize the meaning of and measures for a given quality, and leave the full details of the
meaning and measures to some system requirements specification or architecture requirements
specification documents.

2. Constraints - Constraints are conditions and limitation on the system from its environment, e.g.
limitation concerning the platforms on which a system is to run (e.g. Windows/Intel compliance, fits in
less than 1MB of RAM, etc.), or conditions on qualities of service (for example, average throughput
can not ever be less than 100 transactions/second). Often, the constraints mentioned here are
summaries of constraints specified into more details in some architecture requirements documentation.

the chosen abstraction level for interactions – the event or call that triggers the operation. Each input interaction
triggers a new operation; any more detailed communication between actor and system is abstracted away.
The same distinction applies between component use cases and component operations.
5 A good starting point for finding non-functional requirements is FURPS, and acronym that stands for the attributes
Functionality, Usability, Reliability, Performance, and Supportability.

 Hewlett Packard, 2000 HP Architecture Template Page 9 of 38
All rights reserved.

3. Principles – Principles describes the approach or strategy chosen to solve certain requirements which
may be mentioned before as qualities or constraints. Principles underlay the architecture chosen. E.g.,
the non-functional requirement “ease of use” for a e-commerce application could be solved by having a
shopping cart. Or certain development constraints could be approached by rather buying than building
system components.

Non-functional requirements get referenced in subsequent sections (e.g., commentary in the overview
section, mechanisms section), which explain how the chosen architecture meets these requirements.

Example
CellKeeper: Qualities
• The management system remains active even if all or part of the actual cellular network goes down. In case of

partial failures of the cellular network, CellKeeper still allows operators to edit changes for the part of the network
still available and can apply these changes to the network.

• Failures (e.g. power failures) of operator stations, and aborts of operator sessions (especially web sessions)
should not affect other operator sessions or any other functionality of the CellKeeper system.

• Extensibility: The system must be extendable with new cell types without any downtime.
• …

CellKeeper: Constraints
• The system has to run on Linux.
• …

CellKeeper: Principles
• Interface procedures for individual cell types are stored in a repository and not hard coded, so new cell types can

be added dynamically. This principle supports extensibility.
• …

Figure 6: Example CellKeeper: non-functional requirements

 Hewlett Packard, 2000 HP Architecture Template Page 10 of 38
All rights reserved.

3.3 Structure Section

The purpose of this section is to describe the static structure of the architecture in terms of its logical
components and their interconnections. The mapping of logical components to processes and code
components is shown in section 3.5. Logical components are units of responsibility on a specific
abstraction level. A component may correspond to a single class or a group of implementation classes6.
Components on a high abstraction level are often called subsystems. Unless mentioned otherwise, in this
document the term component is used to denote a logical component. As shown in Figure 7, the section has
three parts, an overview, a description of each component, and a specification the interfaces of all
components.

Structure

(ii)(i) (iii)

<Interfaces>

operations of the
interface

<Components>

purpose,
responsibilities,
interfaces of each
component

<Overview>

architecture
diagram &
commentary

Figure 7: Structure section

3.3.1 Overview Section

The structural overview comprises one or more architecture diagrams together with commentary. It
describes the topology of the architecture.

Each architecture diagram shows structural elements of the system(s) and their interconnection paths.
The view at the highest level of abstraction should be presented first with more detailed views following.

An architecture diagram for the logical view is conveniently expressed using the UML class diagram
notation7, in which the system is represented as a composite aggregation8 of all its components.
Components are modeled by the UML class symbol. Interconnections between components are modeled by
associations. These associations can represent direct connections or they can also be used to abstract away
details of more complex connection and communication patterns (e.g. indirect communication based on
events, communication over a distribution system). The direction of the association shows which

6 Components may merely serve as a high-level grouping mechanism for classes and not be reflected in the actual code
(white-box component). Or components may be encapsulations of classes having an interface or façade class that is part
of the component and hides the internal structure of the component (black-box component). Such interface or façade
classes often have the name of the component they belong to. Components can be passive or active (have their own
thread of control), be created at system startup or be created and deleted any time at runtime, be singletons or have
several instances, and they can be system specific or be reusable library components or COTS. Most logical
components modeled in an architecture document reflect software components, but they could also give a purely
functional view of other technical components (e.g., sensors), if these are considered as part of the system and not as
actors. Logical components can be mapped onto hardware nodes and into code components (code files, code libraries,
code packages). That mapping can be 1:1, but this is not necessary – a logical component may be mapped to code in
various packages or files, and these packages or files may contain code for various logical components.
7 As an alternative, UML object diagrams can be used where logical components are represented as objects or object
groups.
8 Composition is a strong “whole-part” association in which lifetime of parts is co-incident with whole and if the whole
is copied or deleted then so are the parts.

 Hewlett Packard, 2000 HP Architecture Template Page 11 of 38
All rights reserved.

component initiates communication9 on the chosen abstraction level. An association can be stereotyped to
show the type of a connection10. Generalization and dependency relationships between components are
added as needed.

Optionally, in the same or an additional diagram, the interfaces defined in section 3.3.3 can also be shown
by using the round interface symbol and adding dependency arrows between the interfaces and the
components using them. Although technically they are not part of the architecture, it is often convenient to
include the actors that the architecture interacts with on the architecture diagram. Figure 8 and Figure 9
contain an example of architecture diagrams for the logical view.

The commentary describes items like the rationale of the architecture, outlines architecture styles and
patterns, specifies any architectural constraints, and optionally also mentions alternative architectures not
chosen (example see Figure 10).

The rationale behind the architecture gives the reason why a particular topology and architecture style has
been chosen and why particular components exist. It relates the architecture to higher level business
objectives. It explains how the architecture satisfies the architecture requirements documented in
architecture requirements documents and constraints summarized in section 3.2.3. This section can also
contain forward references to other sections like section 3.4.1.

Architectural constraints are important rules or principles governing component behavior or
intercommunication, they are closely connected to the architectural styles chosen. If such a rule is violated
then the architecture cannot be guaranteed to work correctly.

If alternative architectures have been considered, the commentary should also mention or reference these
architectural concepts and give the reasons for not choosing them.

An architectural style defines a family of systems in terms of a pattern of structural organization. Thus it is
a set of rules, which determines a set of components and the manner in which they should be connected
together. Examples for architectural styles and patterns are:
- Layers: System with mix of high-level and low-level abstractions and issues, where high level

operations rely on lower level ones. Components are grouped into layers (subsystems) where each
layer only uses operations and has associations to components from the next lower layer. Variant:
associations are allowed to components from any lower layer.

- Pipes and Filters: System whose task is to transform a stream of data. Each processing step is
encapsulated in a filter, data is passed through pipes between adjacent filters.

- Broker, service discovery (for distributed systems): System where it is desirable to loosely couple the
client from the service provider. A broker is used for registering, discovering and connecting to
services. Optionally, the broker also takes care of forwarding and marshalling all communication
between client and server.

- Model-View-Controller: System that needs to allow the user interface to change without affecting the
underlying data. System functionality and data is separated into user interface (view and control) and
model (business data and functionality).

- Event based communication: Systems where certain components communicate with each other via
implicit invocation instead of direct procedure calls. Components can subscribe to events published by
other components. Variants: pushing or pulling events, event channels.

More information about architectural styles can be found in [5] and [6].

9 Actual data flow can take place in both direction, independent of the association direction.
10 The type of connection can refer to the underlying distribution system or communication mechanism used (e.g.,
CORBA, RMI, proprietary communication protocol, event broadcast, message passing). The type of connection can
also refer to any higher level domain specific communication protocol used for the communication between the two
components (e.g., SMTP protocol, http, or proprietary high-level protocols). The type of a connection can also depict
indirect (event-based) invocation, e.g., by using the stereotype <<implicit>>. The type of the connection is given as a
stereotype of the association. As an alternative, special association symbols can be defined and used.

 Hewlett Packard, 2000 HP Architecture Template Page 12 of 38
All rights reserved.

Example
CellKeeper

Cell id
generator

Authentication
server

Repository

Main

Physical

Executor

UpdateScheduleQ

gets network configuration from

Session-
control Deltacreates

sends network
configuration to

creates

1 communicates with 1

login

sends updates to

 sends result updates to

sends messages to

operator

mail_server

cellular network

0..n

1 cellid supplier 1 authentication
 key supplier

0..n

0..n

1

1
1

1

1

1

0..n

0..n

0..n0..n

1

0..n

0..n

<<SMTP>>

Log
<<implicit>>

stores changes in

The CellKeeper system has one central repository for the cell management interfaces, one
cell id generator, one authentication server and one executor. The system also contains an
up-to-date model of the actual cellular network in the component physical. For each session
with an operator, a Session_control component is created. The component Log records all
changes (failed and successful ones) that have been applied to the network.

Cell Management Interfaces have to be located via a repository – so they can be changed
at runtime. The interfaces have to be used indirectly through the Session-control
component.

A Session_control component creates a Delta component for a set of update commands. At
the end of the updates, Session_control passes a reference to Delta to the executor
component and no longer uses the reference. The Executor component uses the reference
to run the updates against the cellular_network.

The Physical component must be kept consistent with the actual state of the network. It is
updated whenever a delta has been successfully applied to the network – but not
otherwise.

The system allows several operators to edit changes in parallel. The actual execution of the
changes is done sequentially. Changes are checked for consistency by the system while
they are edited and before they are applied. Finally the cellular network itself can refuse
changes, in which case all the changes belonging together are rolled back.

Figure 8: Example CellKeeper: overview architecture diagram

 Hewlett Packard, 2000 HP Architecture Template Page 13 of 38
All rights reserved.

Example
Control Layer

Subcomponents:
- Main
- Cell_id_generator
- Session_control
- Delta
- Executor

Information Layer

Physical Repository Authentication
server

<<uses>>

This diagram shows the architecture of CellKeeper from another point of view:
the layering of the various components. For the associations between the
individual components see the main architecture diagram.

Figure 9: Example CellKeeper: Architecture diagram for the layering of the logical components

Example
Commentary:
Reasons for having Session_control and Delta components:
• For each operator session a Session_control component is created. This makes it easier to deal with

aborted sessions and to guarantee that aborted sessions do not influence other sessions.
• Because a set of changes has to be dealt with together when being scheduled and applied to the

network, each set of changes is being grouped together into a Delta component.

Layering of components:
• A layered architecture style has been chosen (see layering diagram). The components of the control

layer access and update the information stored in the components of the information layer.
• It is conceivable that other applications than the CellKeeper would access the information of the

information layer.
• The three information layer components run in separate processes, and can be deployed onto different

servers, thus allowing the information components to stay alive even if the control layer crashes (see
also Other views section).

Alternative architectures:
This architecture has been taken over from the prototype PfMCM. No alternative architectures have been
explored due to time and cost constraints.

Figure 10: Example CellKeeper: architecture overview commentary

In case of large complex systems, diagrams on different levels of abstraction are used, with the top-level
diagram showing the decomposition of the system into a handful (5 ± 2) of pieces. These pieces are high-
level components; however, more often they are referred to as subsystems. Subsystems are also modeled as
classes or objects in a class or object diagram. Lower level diagrams show the decomposition of the high-
level subsystems or components into the components that are described in the components section 3.3.2..

 Hewlett Packard, 2000 HP Architecture Template Page 14 of 38
All rights reserved.

If any architecture style or pattern has been used as an organizing principle (e.g., layering), a high-level
diagram is used to reflect the organizing principle, resulting in the most abstract description of a system or
a family of systems.

In case of a family of systems, e.g., product lines, a distinction has to be made between the generic
architecture11 of the product family and the specific architectures of individual products. Ideally, the
generic architecture and the specific architectures are described in different documents that reference each
other.

3.3.2 Components Section

This section describes each component in the architecture. A component is documented using the following
template:

Component A unique identifier for the component.
Responsibilities Responsibilities, provided interfaces, and rationale.
Collaborators Other components that the component interacts with.
Notes Information about multiplicity, concurrency, persistency,

parameterization, etc.
Issues List of issues that remain to be resolved.

Table 1: Component specification

Figure 11 contains an example of a component specification. The following sections discuss the form and
semantics of each field of the specification.

Component

Each component should have a unique name and possibly a version number. This section can also contain
references to the component design documentation and to the implementation. In case of a complex
component that has been broken down into subcomponents, also add the reference to the chapters or to the
architecture document describing the internal structure of the component.

Responsibilities

Describes the purpose or job description of the component in terms of

1. the component’s responsibilities,
2. the interface(s) that it provides.

A responsibility is a “piece of functionality” and specifies the purpose of the component. It can be
information that the component has to know, or an action that it knows how to perform.

Interfaces can be listed by reference to named interface specifications in section 3.3.3, or by explicitly
listing and describing the use cases or operations that constitute the interface in the same way as they are
described in section 3.3.3. Referencing named interfaces facilitates component “plug and play”.

It can also be useful to document the rationale for the component, i.e. give the underlying reasons why the
component is designed the way it is.

11 For modeling placeholders for architecture specific components in a generic architecture model the UML symbol for
abstract classes can be used. As an alternative, placeholders in generic architectures could be modeled by a special
placeholder symbol (e.g., class symbol with stereotype <<placeholder>>, operation of stereotype <<placeholder>>,
class symbol with gray edges).

 Hewlett Packard, 2000 HP Architecture Template Page 15 of 38
All rights reserved.

Collaborators

Lists the other components from which the component requests services in order to achieve its purpose.
Besides the collaborators it is often useful to list also the specific use cases, operations or interfaces of the
collaborators that are used.

Notes

Documents the architectural or system-level constraints on the component that the design of the component
must satisfy and contains further information needed to use and understand the component. The notes
section includes issues such as:

• Multiplicity: How many instances of this component exist in the architecture? Are the instances
created and destroyed dynamically? If so, under what conditions and how does creation and
destruction occur?

• Concurrency: Is the component multi-threaded? Does it contain data that needs to be protected
against simultaneous reading and writing?

• Persistency: Does the component or its data need to exist beyond the lifetime of the system?
• Parameterization: Describes the variability of a component, i.e., ways in which a component can

be parameterized or configured. This is especially important when a different configuration of the
component changes the depiction of the architecture12.

Issues

List of issues awaiting resolution. There may also be some notes on possible implementation strategies or
impact on other components. As the understanding of the system and its architecture increases this list
should eventually become empty.

12 For example, in printer software a component might be configured for monochrome and for color, and the two
configured components have different sets of collaborators or collaborations. Yet parameterizations that are concerned
only with the internals (algorithms) of a component without influence on the architecture need not be documented here.

 Hewlett Packard, 2000 HP Architecture Template Page 16 of 38
All rights reserved.

Example

Component Delta
Responsibilities Records a history of the change commands that are requested by the operator.

Knows which operator issued the commands.
Incrementally develops a model of the effect of the changes on the actual
network.
Notifies the Operator of the effect of the changes once they have been applied
to the actual network.

The provided interfaces are:
(i) Cell_access
Provides operations for accessing and updating a model of the cellular network.
See interface specification. The change commands are not directly applied to
the real network, but are first recorded for later application.
(ii) Update_report
A single operation change_finished which is used to report the effect of the
changes after they have been applied to the actual cellular_network.

Note that update_report interface is necessary because only Delta knows who
created the commands.

Collaborators interface Cell_ access component Physical
interface Cell_type component Repository

Notes The component is dynamically created and destroyed. It is created whenever
an Operator starts a new set of update commands. It is destroyed once these
commands have been applied to the network.

Issues How are the update commands to be recorded?

Figure 11: Example CellKeeper: specification of a component

3.3.3 Interfaces Section

Interfaces group services (operations, use cases4) and allow to describe services independent of the
components or system providing them. This is especially convenient if a set of use cases or operations is
supported by more than one kind of component so that the set can be referred to in the description of
components13. It is also very helpful when a component has several responsibilities, each responsibility
being expressed by a different interface. Each interface is documented using the following template.

Interface A unique identifier for the interface
Description Brief description of the purpose of the interface.
Services14 Name and description of each use case or operation supported by

the interface.
Protocol Constraints on the order in which the services may be called.
Notes List of components providing this interface, additional details.
Issues List of issues that remain to be resolved

Table 2: Interface Specification

13 The notion of named interfaces supported by one or multiple components occurs in distributed component
technologies such as COM and CORBA, but is also commonly used in Java.
14 With the services of an interface we mean the use cases and operations provided by this interface or by the
component or system having this interface. This definition of service is not to be confused with the term e-services in
e.g. e-speak where an e-service is actually a component or a whole system having one or several interfaces.

 Hewlett Packard, 2000 HP Architecture Template Page 17 of 38
All rights reserved.

Interface

Each interface should have a unique name and possibly a version number.

Description

Describes the overall purpose of the interface in terms of its responsibilities.

Services

Services can be requested from a component or system in order to effect some behavior. For systems they
can be specified either as use cases or system operations, for components they are normally specified as
operations15. The service section contains at least the name and a short description in terms of its
responsibility for each service belonging to the interface. Depending on the level of detail and formality
chosen for the documentation, services are further specified by their signatures, using UML, C++ or Java
syntax. Further details may be added: pre- and post-conditions, possible inputs and their results, services
needed from other components in order to provide the results. Yet even a detailed description should
specify the services from an external point of view, and not describe their implementation or the internal
structure of components providing the interface. In case the services are not invoked by a procedure call
(e.g. event based systems), also specify how the services are triggered.

Protocol

The protocol section contains constraints on the order in which the services may be called. For complex
protocols a state machine representation (e.g. UML Statechart Diagram) should be used. For simple
protocols the description can be narrative text or via the statement of pre- and post-conditions on the
operations or use cases. Alternatively, sequence diagrams can be used for visualizing protocols.

Notes

List of the components that provide this interface.

Operations specified in the services section of an interface specification for a component are not necessarily
atomic. They may be abstractions of conversations where the two components actually exchange several
messages or procedure calls in order to communicate the input and output parameters of the operation
signature15. This is typically the case for user interfaces and for communications between distributed
components. If operations are not atomic, the notes section should say so, reference the name of the
conversation if different from the operation name, and give the section (e.g., a mechanisms section, or
another interface section describing the conversation protocol), appendix or separate document (e.g., the
architecture specification of this component) in which the conversation abstracted by the operation is
documented. Such documentation should include the lower-level messages or operations involved as well
as the constraints on their order (their protocol).

15 On a lower abstraction level non atomic operations become use cases of the component, having several input and
output interactions with the invoking component, which becomes an actor of the component offering the operation. An
example of a non- atomic operation could be the operation “send_email(to, cc, from, text)” of an email server. While
modeled as one operation in the architecture diagram, the actual communication could use SMTP, comprising
operations like “HELLO(hostname):status”, “RECIPIENT(…)”, “DATA(…)”, etc.

 Hewlett Packard, 2000 HP Architecture Template Page 18 of 38
All rights reserved.

Issues

List of issues awaiting resolution.

Example
Interface Cell_access

Description Allows access and modification of network cells. The network structure
can also be explored and also be modified.

Operations Operation browse_cells_in_sector(sector id, list).
Description produces list of cell_ids and their locations
belonging to the sector

Operation neighbors_of(cell_id,list)
Description lists all the neighboring cells

Operation access_cell_access_proc(cell_id, “command”,response)
Description Accesses management interface of cell
and returns a reference to management procedure corresponding
to the command.

Operation remove_cell(target_id)
Description removes target_id cell

Operation create_ new_cell(type, location, cell_id)
Description New cell created at location.
System returns identifier of new_cell_id .

Operation apply(proc, c,args,resp)
Description Applies the management interface procedure, proc, to
the cell c with arguments args. The response is returned in resp.

etc.

Protocol no restriction on order of operations
Notes This interface may be provided by an actual cellular network or a network

model. Supported by: Delta, Physical.
Issues

Figure 12: Example CellKeeper: specification of an interface

In communication centric systems the interfaces section may be used to specify the conversation protocol
between two components instead of the interface of just one component, thus combining two interface
specifications into one. The operations section will contain the messages exchanged, the protocol section
the constraints on the order of the messages (pre- and post conditions on the messages, or sequence
diagrams with pseudo-code commentary), and the notes specify the components involved in the protocol
and the roles they play.

 Hewlett Packard, 2000 HP Architecture Template Page 19 of 38
All rights reserved.

3.4 Dynamic Behavior Section

Dynamic
Behavior

(ii)(i)

<Mechanisms>

descriptions of component
collaborations not specific
to one scenario

<Scenarios>

specification and
component interactions
for system operations or
system use cases

Figure 13: Dynamic behavior section

The dynamic behavior section specifies the behavior of the system into more details. The scenario section
focuses on a detailed specification of the system’s operations or use cases from an external as well as
internal point of view. The mechanisms section provides important models of the systems internal
behavior not covered by the scenarios section.

3.4.1 Scenarios Section

The scenarios section documents the dynamic behavior of the architecture for the various system use cases
or system operations by specifying how the architecture responds in a number of different scenarios in
response to external stimuli.

Each scenario is documented by
• a specification that defines how the architecture should behave in response to one or more

stimuli from its environment, and
• a component interaction model which describes how the components collaborate to produce

the behavior specified by the scenario.

Name: Goal or purpose

Scenarios

<Scenario>

<Specification> <Component
Interaction Model>

(ii)

Textual and/or graphical
models that describe the
interactions among
components to realize the
scenario (internal view).

Description of the goal of
the scenario, the actors
and the steps involved
(external view).

(i)

Figure 14: Scenarios section

System behavior can be modeled with use cases and/or system operations. A use case consists of several
steps and interactions between one or several external actors and the system in order to achieve a specific
goal. If on a given abstraction level the steps of a use case are no further decomposed, the steps are
considered as being system operations. In contrast to use cases, a system operation only has one input
interaction on the chosen abstraction level for interactions – the event or call that triggers the operation.
Each input interaction triggers a new operation. Any more detailed communication between actor and
system is abstracted away. Use cases can be used for the scenario specification as well as for the interaction

 Hewlett Packard, 2000 HP Architecture Template Page 20 of 38
All rights reserved.

models. Or both, specification and interaction model can be modeled based on system operations. It is also
possible to describe use cases in the scenario specification, add to the specification how the use case is
divided up into system operations, and to model system operations in the interaction models.

Scenario Specification

Each scenario describes a single purposeful set of interactions between some actors and the system. The
specification should describe the expected behavior of the system from an external viewpoint. A scenario
specification should avoid discussing the internal workings of the architecture. The choices for specifying a
scenario are:

• A use case16 description showing the interactions between the system and the actors in its
environment – but without mentioning the behavior of components (example see Figure 15).

• A system operation description specifying the interactions with the system for one system
operation (Figure 16 shows the system operation change_implemented; together with the system
operation enter_changes it would cover the same functionality as described by the use case
description in Figure 15).

• In an architectural reference manual, additionally pre- and post-condition specifications can be
used (example see Figure 16).

The system interface section in 3.2.2 gives a high-level description of the system interfaces, it only contains
a list of use cases or system operations. The scenario specification section describes them into more detail.

When use case descriptions are used in the scenario specification, the scenario specification can optionally
list the individual system operations being part of the use case. As a consequence the component interaction
model may be given by an interaction model for each system operation.

Component Interaction Model

Most scenario specifications are accompanied by an interaction model that describes how the components
collaborate in order to realize the goal of the scenario. The essential difference between the scenario
specification and the interaction model is that the former has an external viewpoint while the latter has an
internal viewpoint.

There are a number of choices for documenting component interactions. Commonly used techniques are
use case descriptions that also contain the necessary interactions among components (as in Figure 15), one
or more sequence diagrams showing exemplar interactions between components and actors (as in Figure
17), UML activity diagrams, or collaboration or sequence diagrams accompanied by a pseudo-code
specification (as in Figure 16). Of course, in contrast to scenario specifications, component interactions
must discuss how components collaborate!

Typically there are a handful of key scenarios, which must be understood in order to understand the system
as a whole; these are the ones that should be documented in an architectural overview document. The
overview should also capture any mechanisms that deal with high-risk issues, e.g. real-time performance or
security. In contrast to an architectural overview document, a reference manual should document all the use
cases or system operations that are identified during the architectural design process. In most cases the
modeling techniques are used in a less formal way for architectural overview documents, whereas more
emphasis is put on formality, details and completeness in architectural reference manuals, even if the same
modeling techniques (e.g. sequence diagrams or use case descriptions) are used.

16 Often use cases are more appropriate for interactions with human actors as they allow to model a sequence of
interactions with the human actor in one use case, and operations are more appropriate for services requested by
software actors (other systems), as they typically have only one input event and only return one result event to the
requesting system. Another criterion for choosing the abstraction level of use cases or of system operations for
modeling the system behavior is the complexity of the individual system operations: if they are trivial, rather model on
the level of the use case the operations are part of in order to minimize the number of scenario specifications and
interaction models needed.

 Hewlett Packard, 2000 HP Architecture Template Page 21 of 38
All rights reserved.

Interactions that occur in various scenarios can be modeled in the mechanisms section 3.4.2 and can be
referenced in the interaction models provided here.

Example

Scenario Specification: Operator Session for Changing Network
The architecture has to be able to deal with updates to the cellular network. Updates may be entered simultaneously,
updates may be inconsistent and multiple updates may be scheduled for the same time.

Use case OperatorChangingNetworkSession

Description Operator session for using system to manage network.

Actors Operator (primary)

Cellular_network

Steps 1. Operator logs in (user_id). System allows only valid operators to proceed.

2. Operator performs any number of changes to cells. Each change is scheduled to happen at
a later time – usually in the early hours of the morning after the operator has logged out.

3. After the changes have been completed the system notifies the operator of the results of the
changes to the actual network; if a change fails then the network is rolled back (see
scenario Change_implemented).

Component Interaction Model for OperatorChangingNetworkSession

Use Case OperatorChangingNetworkSession

Description Operator session for updating the network.

Actors Operator, Cellular_network

Components :Session_Control, :Delta, :Physical, :Executor

Assumptions 1. Most updates are independent of each other.

2. The consistency check will catch most updates that are going to fail if applied to the network.

3. :Executor ensures that only one set of changes to the cellular network are in progress at any
one time.

Steps 1. A :Session_Control component is created when an operator logs in. For each set of updates
that the Operator works on a :Delta component is created to record the changes. As the
Operator accesses cells :Delta accesses :Physical to locate cell parameter values.

2. When the Operator has finished a set of changes :Delta checks whether they are consistent
with the state of :Physical. If they are, the :Delta component is sent to the :Executor
component to be activated at the appropriate time.

3. When that time arrives the changes are again checked for consistency with the (current) state
of :Physical. If they are consistent then the changes are applied to the cellular_network.

4. When the cellular network has completed the changes it informs the :Executor whether they
were successful. If the changes failed then the :executor rolls the cellular network back to its
original state.

5. If successful then the :Physical component is updated to bring it in line with the cellular
network.

6. In both cases the :Operator is emailed of the result of the changes.

Variations #6. If the operator is logged in then the notification will also be sent to the Operator’s terminal.

Figure 15: Example CellKeeper: high-level specification and textual component interaction model for the
use case “OperatorChangingNetworkSession”

 Hewlett Packard, 2000 HP Architecture Template Page 22 of 38
All rights reserved.

Example
Scenario Specification: Network issues Change_implemented

System Operation Change_implemented(change#, OK?)

Description The operation change_implemented is invoked by the network when it has completed an update.

Actors Cellular_network (primary)

Operator, Mail_server

Input change#: reference number of the changes implemented

OK?: reports whether changes have been successful

Output rollback_to_pre {Cellular_network}; notify_user {Operator}; email {Mail_server}

Preconditions -

Postconditions IF OK? THEN updated cells in change# have been copied to :Physical
ELSE rollback_to_pre (change#) has been sent to cellular_network.

email (change#, ok?, userid) has been sent to mailserver.

IF operator issuing the changes is still logged in, notify_user(change#, ok?) has been sent to
operator.

Component Interaction Model: Network issues “Change_implemented”

using collaboration diagram with comment for change_implemented(change#, OK?)

:Log:Log

[not OK?] 2 * :
commands to roll
back the network

:Executor
3:change_finished(OK?)1: change

implemented
(change#, OK?)

{change#}

5: emails (change#, OK?, userid)

:Delta

:Physical

 [OK?] 4*:update(c,cell_params)

:Session
Control

[u logged in] 6:
notify_user(change#, result)

mailserver

cellular_network

operator

7: notify:Log

<<implicit>>
8: changes(loginfo)

1. Network notifies :Executor about applied changes.

2. If the change to the network fails (i.e. not OK?) the :Executor issues the network commands to rollback the actual
network to its previous state.

3. The :Executor also notifies the :Delta component that had initiated the network update of the result of the change.

4. If the change was successful then :Delta updates :Physical, i.e. the internal network model.

5. :Delta also emails the result of the change to the Operator.

6,7. If the Operator is still logged in, :Delta sends a message to the :Session Control component so that the Operator
can be notified online.

8. All failed and sucessful changes are sent to any :Log components having subscribed to receive that information.

Figure 16: Example CellKeeper: detailed specification using pre- and post-conditions and component
interaction model using a collaboration diagram with pseudo-code specification for the system operation

“Change_implemented”

 Hewlett Packard, 2000 HP Architecture Template Page 23 of 38
All rights reserved.

operator
:Main

s:Session_
control

d :Delta

:Physical

login(...): s create

start_changes(...): d create

* operations as specified in Cell_access interface get information

exit_edit_changes() check_changes(): ok get information

:Executor

[if changes ok] queue_delta(d)

[if changes ok] "change will be applied"

cellular network

[at right time]
apply_changes(...)[if changes ok] "reedit changes"

Example

etc.

Figure 17: Example CellKeeper: an alternative component interaction model for the use case
“OperatorChangingNetworkSession” specified in Figure 15

3.4.2 Mechanisms Section

The mechanisms section allows the explanation and documentation of issues concerning system behavior
and component collaboration that have been postponed or abstracted away in previous chapters. The
mechanisms section:
• explains the component collaborations provided for satisfying non-functional quality and constraints

requirements listed in section 3.2.3 that concern the behavior of the system17 (e.g., in distributed
systems how data replication works and how data consistency is guaranteed, how performance
improvements are achieved by caching data locally and how data integrity is cared for, or for systems
with security concerns how authentication, authorization and accounting works),

• gives details to architecture styles and patterns used (e.g., it provides more detailed architecture
diagrams to explain the mechanisms used for implicit invocation as in Figure 18 or to explain the
mechanisms used to obtain a reflective architecture),

• describes how use cases work together,
• describes repeating interaction patterns that are part of several system use cases or system operations

and therefore their description has been deferred to the mechanisms section.

The mechanisms section is optional; if all behavioral issues have been modeled and explained into enough
details in previous sections, the section is omitted.

The mechanisms section contains text, class diagrams, objects diagrams, and interaction diagrams showing
specific collaborations.

17 The satisfaction of all the non-functional requirements is assessed in the conclusion section 3.6. Here the focus is
only on modeling important mechanisms that help to fulfill requirements concerning system behavior.

 Hewlett Packard, 2000 HP Architecture Template Page 24 of 38
All rights reserved.

connect_push_consumer(...)

:Executor e:EventChannel

c:=get_channel

e:=create_eventchannel()

s:=for_suppliers()

:Log

Example
:CORBA

EventService
s:Supplier

Admin
c:Consumer

Admin
p:Consumer

Proxy

p:=obtain_push_consumer()
connect_push_supplier(...)

setting up event channel for supplier

connecting consumer to event channel

q:=obtain_push_supplier

q:Supplier
Proxy

c:=for_consumers

implicit invocation
push (change_loginfo) internal marschalling

done by event service

[to all subscribed components] push (change_loginfo)

Getting eventchannel from CORBA event service.

Subscribing as a (push) supplier
 to the eventchannel.

Getting needed event channel interface
from Executor.

Suscribing to this eventchannel as (push)
consumer.

Distribution of event change_loginfo to all
interested components is done by the CORBA
event service.

The components EventChannel, SupplierAdmin, SupplierProxy, ConsumerProxy and
ConsumerAdmin are all created and provided by the CORBA event service.

Figure 18: Example CellKeeper: mechanism for the implicit invocation of methods of the Log component

 Hewlett Packard, 2000 HP Architecture Template Page 25 of 38
All rights reserved.

3.5 Other Views Section

Name: Goal or purpose

Other Views

<Process View> <Development View>

(ii)

development models,
mapping of logical
components into code
files

process models, mapping
of logical components to
processes

(i)

<Physical View>

(iIi)

deployment models,
mapping of logical
components, code, and
processes onto hardware
nodes

...

Figure 19: Other views section

The other views section describes the process, development and physical view of the architecture, and
shows how the logical components map into these other views. The sections specify:

• the static model (the structure and interconnections) of the processes, code components or
hardware nodes,

• the dynamic model of the processes, code components or hardware nodes for specific
scenarios (examples of interactions among the elements),

• mapping of the logical components described in sections 3.3 and 3.4 onto processes, code
components or hardware nodes.

All three views are optional. Whether they are included in the architecture document or not depends on the
purpose and audience of the document as defined in section 3.1.

3.5.1 Process View Section

The process view section depicts the process view of the system and maps the logical view into the process
view. It describes the system’s decomposition into executing tasks and processes by assigning logical
structural elements to threads of control, and grouping threads and processes. For the static model of
processes and threads and the mapping of logical components a class or object diagram is used. Processes
and threads are modeled by classes or objects of stereotype <<process>> or <<thread>>. Composition is
used to model the assignment of logical elements (active and non-active components of the logical view) to
processes and threads (example see Figure 20). Composition is also used to model any hierarchy between
processes and threads. Processes or threads interacting and communicating with each other may be linked
by associations.

Optionally sequence or collaboration diagrams may be added showing the interactions taking place
between processes for specific scenarios or mechanisms specified in section 3.4.1 or 3.4.2. Of course such
interaction diagrams have to be consistent with the component interaction models of section 3.4 and the
mapping specified above.

1 <<process>>
main

Main
Executor
Cell id generator

1 <<process>>
login server

Authentication server

1 <<process>>
database

Physical
Repository

0..n <<thread>>
session

Session_control
Delta0..n

1

0..n <<process>>
Log

Log

Example

Figure 20: Example CellKeeper: static model of process view

 Hewlett Packard, 2000 HP Architecture Template Page 26 of 38
All rights reserved.

3.5.2 Development View Section

The development view section explains the development view of the system and shows how the logical
view maps into the development view. It describes the decomposition of the system’s code base into code
components like files and libraries, dependencies between these code components, and the assignments of
logical components of the logical view to code components. The UML package symbol can be used for
showing the various groups of code files and their implementation dependencies (e.g., compile or usage
dependencies). The assignment of logical components to packages can be done either by listing all logical
components in the description of the package, or by explicitly using the file symbol or the UML component
symbol for components, and modeling in a diagram the composition of the code components into packages
and the assignment of logical components to code components. The description of the code components,
their interdependencies, and the assignment of logical components to code components can also be done
textually.

Example
Implementation mapping:
• For each logical component a directory is created that contains all code files belonging to that

component.
• For each class a separate file is created.

Figure 21: Example CellKeeper: mapping of logical components to code components

3.5.3 Physical View Section

The physical view section describes the deployment of the system. It shows the architecture of the
hardware nodes and maps processes, logical components or code components onto hardware nodes. It thus
allows us to show how the software is deployed onto the hardware infrastructure.

In a UML deployment diagram processes and logical components are modeled as objects, code components
by the UML component symbol, and nodes by the UML symbol for nodes. Apart from the containment
relationship from hardware nodes to processes, logical components or code components, the diagram can
also use any other model elements of static diagrams, especially dependencies and interfaces. Associations
between nodes can be added to show network connections, their names or descriptions can contain the
name and type of network used. Non-UML diagrams or pictures may also be used to explain the hardware
infrastructure.

Optionally sequence or collaboration diagrams may be added showing the interactions taking place
between hardware nodes for specific scenarios or mechanisms specified in section 3.4.

Cellular Application Server

1 <<process>>
main

1 <<process>>
login server

Database Server

1 <<process>>
database

0..n <<process>>
Log

CORBAdirect access
with terminals

http

Example

Figure 22: Example CellKeeper: hardware infrastructure

 Hewlett Packard, 2000 HP Architecture Template Page 27 of 38
All rights reserved.

3.6 Conceptual Framework Section

Name: Goal or purposeConceptual
Framework

of the
Problem Domain

<Domain Lexicon> <Lexicon Diagram>

(ii)

Relationships between
concepts

Definition of problem
domain and architectural
concepts

(i)

Figure 23:Conceptual framework section

The conceptual framework refers to a network of concepts and the relationships between them. These
concepts are documented in a glossary-like form, which we call a domain lexicon, and visualized in a
diagram, the lexicon diagram. In a domain lexicon each of the important terms in the problem domain and
those terms used in discussions about the system and its architecture are defined. The most important aspect
of the lexicon is to have the definitions of terms be as specific and unambiguous as possible. Figure 24
contains an example.

A supplemental model of the conceptual framework is the lexicon diagram18. It depicts graphically the
relationships between concepts and can convey complex relationships at a glance (see Figure 25 for an
example). The UML class diagram notation is used for the lexicon diagram: concepts are modeled by the
class symbol (without operation or attribute compartment), relationships between concepts by
generalization, aggregation and association symbols19.

It is appropriate for the conceptual framework section to contain other diagrams or pictures explaining the
terms of the problem domain (example see Figure 26). This is especially helpful if the concepts are
geometric or visual in nature.

Example
Cell - A cell in a cellular telephone network handles all the calls of mobile phones in the area it covers. To
do this, it transmits identifying information on a beacon radio frequency and handles the "traffic" on other
frequencies. In busy areas like cities, cell diameters are measured in meters, in rural areas the diameters
can be up to 64 km. The only limit is the interference of cells that reuse the same frequency.

Base station - A base station implements a cell. A base station is a computer plus radio equipment that is
connected to a telephone exchange. Base stations are located on a "site". The sites are the most visible
part of a cellular network because of the very obvious antenna masts that are visible all over the country.
One site can host multiple base stations. The base stations are connected to a telephone exchange that,
besides switching phone calls, is also responsible for controlling the operation of the cells. In the GSM
system it is called the Base Station Controller (BSC).

Figure 24: Example CellKeeper: domain lexicon

18 As the lexicon diagram models the concepts of the problem domain and not the software components it is called the
domain class diagram in some OOAD methodologies.
19 Alternatives to UML class diagrams are semantic networks, concept maps (see Novak[7]), or any other graphical
representation for describing ontology.

 Hewlett Packard, 2000 HP Architecture Template Page 28 of 38
All rights reserved.

Cell_type

Cell

cell_id

has_neighbor

Base_Station

implemented_by

belongs_to

Parameter

Frequency Cell_neighbor
_info

Cell

cell_id

Network

BSC

sector_id

Sector

located_on

has_neighbor

Site

Mobile_Phone

Callhandles

1

Fault

{cell a has_neighbor cell b does not imply cell a belongs_to
same network as cell b}

{cell a has_neighbor cell b implies cell b has_neighbor cell a}

{ BSCs in the same sector control only cells belonging to
the same network.}

{ A site hosts a base station if that base station is
implemented by a cell located on that site.}

develops

Constraints:

Example

Figure 25: Example CellKeeper: lexicon diagram for the CellKeeper domain

Example

Above picture shows the cells of a cellular network with the frequencies assigned to the individual cells. A
cell in a cellular telephone network handles all the calls of mobile phones in the area it covers. To do this, it
transmits identifying information on a beacon radio frequency and handles the "traffic" on other frequencies.
When a network is initially built, the area that is covered by each cell is very large. When the number of
subscribers increases, capacity is added by splitting cells. This results in more and smaller cells, offering
more total capacity. This technique makes cellular networks highly scalable. In busy areas like cities, cell
diameters are measured in metres, in rural areas the diameters can be up to 64 km. The only limit is the
interference of cells that reuse the same frequency.

Figure 26: Example CellKeeper: picture showing a typical distribution of cells.

 Hewlett Packard, 2000 HP Architecture Template Page 29 of 38
All rights reserved.

3.7 Conclusion Section

The conclusion sections describes conclusion drawn from the architecture models and the activity of
architecting. It contains assessments, as well as past and current open issues.

The assessment section should attempt to assess the architecture against its requirements. The assessment
section:

• highlights the advantages and known limitations of the chosen solution,

• describes how well non-functional requirements are met,

• lists any known inconsistencies within the architecture document20 (terminology, deviations from the
requirements stated in section 3.1),

• optionally discusses possible directions for the evolution of the architecture,

• optionally21 documents any consistency analysis done across the architectural views presented in
sections 3.1 to 3.5.

For all non-functional quality and constraint requirements listed in section 3.2.3, the assessment section
describes with which techniques and mechanisms and how well the requirement is met. For requirements
that concern the behavior of the system (e.g., security, availability), the description of how the requirement
is met can reference section 3.4.2.

Issues raised during the design of the architecture or during the review of documentation about the
architecture should be recorded in the open issues section. The documentation for each issue should
contain information about the origin of the issue and the tracking of it until it is resolved. Table 3 contains
a sample template for issues.

Id Risk Origin Description Owner Resolution Status

Table 3: Open issues section

20 Inconsistencies between the architecture document and other requirements documents are dealt with in section 3.1. of
the architecture document.
21 Needed for conformity with IEEE Recommended Practice for Architectural Description

 Hewlett Packard, 2000 HP Architecture Template Page 30 of 38
All rights reserved.

4. Conclusion and Acknowledgments
This document proposes a template for documenting software architectures. A copy of the template as MS-
Word document can be obtained by email from the authors.

Describing architectures is not a new issue. Several books have been published on architecture styles and
architecture patterns, e.g., [5] and [6]. Various Architecture Description Languages (ADLs) have been
developed, though these are primarily oriented towards formal descriptions of component interfaces and
connectors. Also most books on UML modeling emphasize the importance of documenting the high-level
architecture of a system. This architecture documentation template goes a step further in that it proposes the
actual structure of the documentation and gives guidelines how and where to document the various views
of an architecture. This has been possible as this template has evolved from architecture documentation
work done in various projects within HP. A similar approach to the one presented in this paper can be
found in [8], a standard for documenting IT architectures presented in a recent issue of the IBM Systems
Journal devoted to IT systems and their architecture.

Thanks are due to the other members of the PGS architecture practice area: Dana Bredemeyer, Ron Grace,
Mark Interrante, Ruth Malan, and Steve Rhodes. An important starting point has also been the SEI’s
Software Architecture Analysis Method [1].

Since the first release of this template it has been used on a number of projects within Hewlett-Packard on a
variety of types of software: 1) embedded software in test instruments, printers and other devices, 2) device
drivers, 3) graphic display of system configuration data. In the course of our using this template to consult
with teams that were documenting architecture we received and incorporated numerous comments on the
template. We particularly want to thank Jonathan Patrizio and Don Marselle (HP Cupertino), Jon Lewis and
Lee Jackson (HP Vancouver), Axel Wankmueller (Agilent Technologies Boeblingen), and Pat Fulghum
(HP Boise).

5. References
[1] Bass L., Clements P. and Kazman R., Chapter 9 of Software Architecture in Practice, Addison-

Wesley, 1997.
[2] IEEE Draft for Standard, IEEE P1471/D5.1 Draft Recommended Practice for Architectural

Description, October 1999
[3] CellKeeper, a cellular network manager, http://www.bytesmiths.com/pubs/DesignFest96/cells.html
[4] Kruchten, Philippe, The 4+1 View Model of Architecture, IEEE Software, November, 1995. A version

of the this paper is also available on line at: http://www.rational.com/uml/resources/whitepapers/.
[5] Shaw, Mary and Garlan, David, Software Architecture: Perspectives on an Emerging Discipline,

Prentice Hall, 1996.
[6] Buschmann, Frank, et al., Pattern-Oriented Software Architecture, A System of Patterns, John Wiley

& Sons, 1996.
[7] Novak, J.D. and D. B. Gowin, Learning How to Learn, New York: Cambridge University Press, 1984.
[8] Youngs, R., et al., A standard for architecture description, IBM Systems Journal, Vol 38, No. 1, 1999.

 Hewlett Packard, 2000 HP Architecture Template Page 31 of 38
All rights reserved.

Appendix A: Outline Summary
The following paragraph gives an overview of the typical outline of an architecture document as specified
in this template:

1 Introduction: general information about the architecture document, other related documents
2 System Purpose: purpose, functional and qualitative characteristics of the system from a black box

point of view
2.1 Context: description of the context of the system and the problem it solves
2.2 System Interface: services provided by the system
2.3 Non-functional Requirements: principles of the architecture, qualities of services, external

constraints
3 Structure: logical view of the static structure of the architecture in terms of its components, their

interconnections, and the interfaces and operations offered by the components
3.1 Overview: architecture diagram(s) for overall structure, commentary containing rationale,

architecture style, architectural constraints and alternative architectures
3.2 Components:

• for each component: description of the component in terms of its responsibilities,
interfaces it offers, collaboratoring components, possibilities for parameterizations, and
constraints

3.3 Interfaces:
• for each component interface: description of the interface, its operations and

constraints on the order of operations, optionally specification of the operations
4 Dynamic Behavior: specification of the system behavior, collaboration of components for achieving

system behavior
4.1 Scenarios: architecture diagram(s)
for each scenario:

• specification of the scenario as system operation or use case specification for some or
all of the services provided by the system

• component interaction model of the scenario
4.2 Mechanisms (optional): explanation of and interaction models for important mechanisms

5 Other Views:
5.1 Process View (optional): architecture diagrams of the processes showing the mapping of

components to processes
5.2 Development View (optional): mapping of logical components to code components,

structure of code components
5.3 Physical View (optional): architecture diagrams of the hardware infrastructure showing the

mapping of components, processes and code files to hardware nodes
5.x Additional Sections (optional): sections for additional models and viewpoints not specified

in this template
6 Conceptual Framework: definition of the problem domain specific concepts and terms and their

relationships
7 Conclusion: advantages and limitations of the architecture in respect to non-functional requirements,

open issues

Internal and external view of system behavior (logical view)

Logical system and component behavior can be modeled from an internal or an external point of view. Of
course, the specification for the external view of the behavior has to be consistent with any model for the

 Hewlett Packard, 2000 HP Architecture Template Page 32 of 38
All rights reserved.

internal view of the behavior. Table 5 gives an overview of where which view is modeled in the
architecture documentation.

System Component

External view • Context Section 3.2.1.
• System Interface Section 3.2.2.
• Scenario specifications in Dynamic Behavior Section

3.4.

• Components Section 3.3.2,
• Interfaces Section 3.3.3

Internal view • Component interaction models for scenarios in
Dynamic Behavior Section 3.4.

See external system views in the architecture document for
the specific component.

Table 4: External and Internal Behavioral Views

 Hewlett Packard, 2000 HP Architecture Template Page 33 of 38
All rights reserved.

Appendix B: Conformance to the IEEE Recommendation for
Architectural Description
The IEEE Draft Recommended Practice for Architectural Description [2] gives a conceptual framework
and guidelines for documenting architectures. Table 6 shows how the template presented here conforms to
the IEEE recommendation.

 IEEE Recommendation This Template
Section 5.1.: General information about the architecture

documentation
Date of issue and status, issuing organization, change
history, summary

Introduction Section 3.1.

Scope and context Context Section 3.2.1.
Glossary Conceptual Framework Section 3.6.
References Introduction Section 3.1.

Section 5.2.: Stakeholders and concerns
Detailed identification22 of stakeholders (audience) Introduction Section 3.1.
Mission of the system System Purpose Section 3.2., especially Context

Section 3.2.1 and System Interface Section 3.2.2.
Concerns like maintainability, deployability, and
evolvability as well as other concerns of stakeholders

Non-functional Requirements Section 3.2.3.,
Introduction Section 3.1.

Appropriateness, feasibility, and risks Assessment and Issue Sections of the Conclusion
Section 3.7.

Section 5.3.: Selection of architectural viewpoints
Selection and customization of viewpoints Introduction Section 3.1.

Library viewpoints specified by template see table 6

Section 5.3.: Architectural views Conceptual Framework Section 3.6.,
System Purpose Section 3.2.,
Structure Section 3.3.,
Dynamic Behavior Section 3.4.,
Other Views Section 3.5.

Section 5.5 and 5.6: View consistency and architectural
rationale
Known inconsistencies among views, consistency
analysis

Conclusion Section 3.6.

Consistency rules see below
Rationale for selected architectural concepts Commentary in Overview Section 3.3.1.
Alternative architectural concepts Commentary in Overview Section 3.3.1.

Table 5: Mapping of IEEE Recommendation to Architecture Documentation Template

Viewpoint specifications are required by the IEEE Recommendation for Architectural Description [2].
They have to be referenced in the introduction section of an architecture document in order for the
document to be conformant to [2]. Stakeholders addressed in the viewpoints depend on the type of
architecture document (overview or reference manual) to be created (see chapter 2 of this paper).
Stakeholders and their concerns can be further detailed in the introduction section of the architecture
document.

22 The template can be used to create an architectural overview for a wide range of stakeholders – this is typically done
in the early phases of the development. Or the template can be used to create an architectural reference manual, which
is a living document mainly for system developers and guides the system developers throughout the life cycle of the
system even in maintenance and enhancements. The template can be used for the system as a whole and/or for specific
components of the system.

 Hewlett Packard, 2000 HP Architecture Template Page 34 of 38
All rights reserved.

The template focuses on the description of software and firmware systems. The following viewpoints are
part of the template: Context and System Interface Viewpoint, Concepts Viewpoint, Logical Structure
Viewpoint, Logical Behavior Viewpoint, Process Viewpoint (optional), Physical Viewpoint (optional),
Development Viewpoint (opional). Table 7 contains a specification summary of the viewpoints. The
section titles refer to both, to the more detailed specification of the viewpoints in this architecture template,
and to the sections containing the appropriate views in the architecture documentation

Name of viewpoint Concerns addressed Models etc. Sections

Context and System
Interface Viewpoint

What is the boundary of the system?
What other entities does the system
interact with? What are the
responsibilities of the system? What are
the main services offered by the system?

- Context diagram (UML use
case diagram, UML class
diagram, data flow diagram)

- System interface description

System
Purpose
Section 3.2.

Concepts Viewpoint What are the important terms of the
problem domain? How are the terms and
concepts used in the architecture
description defined? How do the different
concepts relate to each other?

- Domain lexicon
- Lexicon diagram

Conceptual
Framework
Section 3.5.

Logical Structure
Viewpoint

What is the static structure of the system?
What are the components of the system?
What are their interfaces? How do they
interconnect? What is the rationale for
the chosen structure?

- Architecture diagram (UML
class diagrams)

- Commentary
- Component specification
- Interface specification

Structure
Section 3.3.

Logical Behavior
Viewpoint

How does the system respond to stimuli
from the environment?
How do the components interact to
produce the desired behavior?

- Scenario specification
- component interaction

model (UML collaboration
or sequence diagram, text)

Dynamic
Behavior
Section 3.4.

Process Viewpoint How are the components of the systems
assigned to threads of control?

- UML object model with
active objects

Process View
3.5.1.

Physical Viewpoint How are the components allocated to
physical nodes?

- UML deployment diagram Physical
View 3.5.3.

Development
Viewpoint

How is the code structured and how are
logical components assigned to code
pieces (files, ...)?

- UML component diagram
- text

Development
View 3.5.2.

Table 6: Viewpoint Specifications in Architecture Documentation Template

The following consistency rules apply between the different views:
• The components (modeled as UML objects) in the component interaction models of the logical

behavior view, in the process view, and in the physical view must be specified in the logical structure
view.

• The interactions in the component interaction models of the logical behavior view correspond to
component operations in the logical structure view.

The use cases and system operations specified by scenario specifications in the logical behavior view
correspond to the use cases and system operations listed in the system interface section of the context and
system interface view.

Additional viewpoints can be specified and modeled in an architecture document. These viewpoints can
either be part of one of the above viewpoints (e.g., special viewpoints part of the logical structure
viewpoint, e.g. a viewpoint addressing security), or they can show the system architecture from a totally
different angle and thus contain elements from various of the above viewpoints or from various subsystems
or components. Examples for additional viewpoints are: data view (ER-model of data stored in a relational
database, extension to the logical structure view), database view (showing all components and behavior
relevant to storing data), network view or communication view, infrastructure view (containing only basic
services), application view, etc. Whether and which additional viewpoints are relevant is system specific.
Additional viewpoints are specified in section 3.1, and are modeled in additional sections 3.x.

 Hewlett Packard, 2000 HP Architecture Template Page 35 of 38
All rights reserved.

Appendix C: Glossary
active object An object that owns a thread and can initiate control activity.

actor An active entity (human user or external system) that is in the
environment of the system and that interacts with the system. An actor
represents a coherent set of roles – one user can perform several roles
and several users can play the same role.

architecture The fundamental organization of a software or firmware system
embodied in its components, their relationships to each other and to the
environment, and the principles guiding its design and evolution.

architectural documentation template A document specifying the structure and content of an
architectural documentation.

architectural overview document An architectural document giving an overview of the architecture at a
high level of abstraction. The document is targeted at a broad range of
audiences including developers, marketing, management and possibly
potential end-users.

architectural reference manual An architectural document specifying an architecture in a detailed and
precise manner. The document is targeted at developers and should be
updates as changes occur so it always reflects the actual architecture.

architectural style Defines a family of systems in terms of a pattern of structural
organization. Thus it is a set of rules, which determines a set of
components and the manner in which they should be connected
together. A style or pattern describes a generic solution to a specific
class of problems appearing typically in a specific context.

architecture pattern see architectural style

architecture see software architecture

class diagram A diagram that shows declarative model elements (e.g., logical
components, interfaces, classes) and their contents and relationships.

code component A package or a set of files or directories that contain the
implementation of a piece of a software system, including software
code or equivalents such as scripts or command files.

collaboration diagram An interaction diagram that shows the components and their
relationships and the messages exchanged between the components. A
collaboration diagram is a special case of an object diagram.

collaborators Components that interact with another component.

communication see conversation

component A unit of responsibility and functionality on a specific abstraction level.
A component may correspond to a single class or a group of
implementation classes. Components may merely serve as a high-level
grouping mechanism for classes and not be reflected in the actual code
(white-box component). Or components may be encapsulations of
classes having an interface or façade class that is part of the component
and hides the internal structure of the component (black-box
component). Such interface or façade classes often have the name of
the component they belong to. Components can be passive or active
(have their own thread of control), be created at system startup or be
created and deleted any time at runtime, be singletons or have several
instances, and they can be system specific or be reusable library

 Hewlett Packard, 2000 HP Architecture Template Page 36 of 38
All rights reserved.

components or COTS. Most logical components modeled in an
architecture document reflect software components, but they could also
give a purely functional view of other technical components (e.g.,
sensors), if these are considered as part of the system and not as actors.
Logical components can be mapped onto hardware nodes and into code
components. That mapping can be 1:1, but this is not necessary – a
logical component may be mapped to code in various packages or files,
and these packages or files may contain code for various logical
components. Components on a high abstraction level are often called
subsystems.

composition An association that specifies a whole-part relationship between the
aggregate (whole) and its parts. The parts are life-time dependant of
their aggregate, i.e., they cannot exist before or after the aggregate
exists.

context diagram A diagram that shows a system or component and the actors it interacts
with.

conversation An exchange of messages between two components for a specific
purpose (e.g., the information needed to start an operation is transferred
in several messages). A conversation is often modeled as one
interaction or message on a higher abstraction level, and then split up
into a sequence of messages on a lower abstraction level. The
conversation protocol specifies the order of the messages involved in
the conversation.

data flow diagram A diagram that shows model elements (e.g., actors, logical components,
hardware nodes) and the information that is exchanged between them.

deployment diagram A diagram that shows the configuration of run-time processing nodes
(hardware nodes) and the logical components, code components or
processes that live on them.

development view A view that describes the decomposition of the system’s code base into
code components like files and libraries, dependencies between these
code components, and the assignment of logical components of the
logical view to code components.

firmware architecture see architecture.

hardware node A piece or several pieces of equipment that provide computational
resources.

interaction diagram A diagram that explains how several components collaborate for a
specific purpose (e.g., a use case) by showing the components, their
interactions, and the usual sequence of the interactions, optionally
further explained or specified by comment or pseudo code.

interaction An exchange of information or stimuli between two components. An
interaction is normally modeled by a message sent from one component
to another one. Interactions can be modeled on different abstraction
levels and can hide more complex conversations.

interface A set of services that specify all or part of the externally visible
behavior of a component. One component can have several interfaces,
and one interface can be implemented by different components.

lexicon diagram A diagram showing the concepts and terms of a problem domain and
the relationships between the concepts or terms.

logical component see component

 Hewlett Packard, 2000 HP Architecture Template Page 37 of 38
All rights reserved.

logical view A view showing the decomposition of the system into logical
components.

mechanism A structure whereby components work together to provide some
behavior that satisfies a requirement of the problem.

message A specification of the conveyance of information to a component with
the expectation that activity will ensue. Messages may be synchronous
(procedure calls) or asynchronous (signals).

object diagram A diagram that shows objects (e.g., logical component instances) and
their relationships, often at a specific point in time.

operation A service that can be requested from a component or system by an
input interaction or message. An operation has a signature, which may
restrict the actual parameters of the messages that are possible.

passive object An object that has no thread of control of its own.

physical view A view showing the architecture of the hardware nodes and how
processes, logical components or code components map onto hardware
nodes. It thus allows us to show how the software is deployed onto the
hardware infrastructure.

postcondition A truth-valued function which defines the required relation between the
input and output values of an operation.

precondition A truth-valued function which defines the possible inputs for which the
operation guarantees the existence of a result.

process view A view that describes the system’s decomposition into executing tasks
and processes by grouping threads and processes and by assigning
logical structural elements to threads of control.

protocol Defines all allowable sequences of services, interactions, or messages.

scenario A purposeful set of interactions between some actors and the system or
between the components of the system.

sequence diagram An interaction diagram that shows the components and the messages
exchanged between them. The interactions are arranged along the time
axes.

service protocol A specification of the constraints that apply to the order of the services
offered by a component or its interface.

service A behavior of a component for the benefit of and requested by a client
(actor, collaborator) of that component. A service can be an operation
of a use case. 23

signature The name and parameters (input and return parameters) of a service.

software architecture see architecture.

subsystem A component on a high abstraction level. Often a system is subdivided
into several collaborating subsystems which again can be analyzed and
modeled separately as systems (the collaborating subsystems become
actors).

23 This definition of service is not to be confused with the usage of the term ‘service’ in the context of e-services and e-
speak. There a service denotes a component, application or system being accessed over the e-speak environment. Like
components and systems, an e-service has operations or use cases that are grouped together into one or several
interfaces provided by the e-service.

 Hewlett Packard, 2000 HP Architecture Template Page 38 of 38
All rights reserved.

system A composition of components organized to accomplish a set of specific
functions. A system is thus the highest level component, the component
of which the architecture is to be documented.

use case diagram A diagram that shows the use cases and the actors of a system or
component, and the relationships between actors and use cases.

use case A service of a component or system specified by the interactions
between one or several external actors and the component or system. A
use case is often specified in several steps, each step triggered by an
input interaction from an actor and containing some actions of the
component. If on a given abstraction level the steps of a use case are
not further decomposed then the steps are considered as being
operations. In contrast to use cases, an operation only has one input
interaction on the chosen abstraction level for interactions – the event
or call that triggers the operation. Each input interaction triggers a new
operation; any more detailed communication between actor and system
is abstracted away.

view A representation of a system from the perspective of a related set of
interests or concerns.

viewpoint A specification of the conventions for constructing and using a view. A
viewpoint acts as a template from which to develop individual views by
establishing the purpose and audience for a view and the techniques for
its creation and analysis.

