
Maintenance Document

Linux Traffic Control-Graphical User Interface – Group paketti2

Helsinki 18th December 2004

Software Engineering Project

UNIVERSITY OF HELSINKI
Department of Computer Science

Course
581260 Software Engineering Project (6 cr)

Project Group
Fabian Fagerholm
Janne Johansson
Markku Manner
Niko Mikkilä

Client
Jukka Manner

Project Masters
Juha Taina
Marianne Korpela

Homepage
http://www.cs.helsinki.fi/group/paketti2

Change Log
Version Date Modifications
1.0 8.12.2004 First version

i

Contents

1 Introduction 1

1.1 Purpose. 1

1.2 Structure. 1

2 Software Architecture 1

2.1 Client and Graphical User Interface. 2

2.2 Server . 4

3 Simple Traffic Control Configuration Protocol 5

3.1 Model of Operation. 6

3.2 Message Structure. 6

3.3 XML Frame Structure. 6

4 Known Problems 9

4.1 Problems in Client Component. 9

4.1.1 Transform TC to XML. 9

4.2 Problems in Server Component. 10

4.2.1 Memory leaks. 10

4.2.2 The Arena memory handler. 10

4.2.3 Fundamental design flaws. 11

4.3 Other Problems. 12

5 Suggestions for Future Improvements 12

5.1 Client Component. 12

5.2 Server Component. 12

5.3 Simple Traffic Control Configuration Protocol. 13

5.4 Other Improvements. 13

6 Vocabulary 13

References 15

1

1 Introduction

The software development project Paketti2 was conducted as part of the course “Software
Engineering Project”, held by the Department of Computer Science at the University of
Helsinki. Paketti2 is the successor to the first Paketti project of 2003. The projects aimed
to produce a graphical tool for easy modification of traffic control settings in the Linux
kernel. The future users of the software are the various research groups at the Department
of Computer Science. The university will also publish the software under either the GNU
General Public License [FSF91] or the GNU Lesser General Public License [FSF99].

1.1 Purpose

The purpose of this document is to provide information and guidance for the future main-
tainer and developer of the software. This document serves as a guidebook for develop-
ment of the software after the project.

1.2 Structure

Section2 describes the basic architecture of the software, providing help for understand-
ing the source code. Section3 describes the Simple Traffic Control Configuration Proto-
col (STCCP) with is one of the building blocks of the software. Section4 describes known
problems regarding the software. These are issues which were found during testing, but
were not corrected due to limited time. In Section5 we cover possible future improve-
ments to the software. This includes ideas which were presented during the development,
but not implemented because of time constraints.

2 Software Architecture

Paketti is a software for managing Linux traffic control settings. The software consists of
a server (pakettid) and a client (paketti). The server is installed on the systems on which
the user wishes to manage traffic control settings. The serer works invoking the Linux
command line traffic control tool tc, which, in turn, invokes the kernel traffic control
interface. Other functions directly invoke the kernel traffic control interface.

The user interacts with the software via the Graphical User Interface, which communi-
cates with the server using the STCCP protocol over a TCP/IP connection. An overview
of the software architecture is presented in figure1.

This section describes the basic functionality of the two software components: Client and
Server.

2

User

Linux-
kernel

Software

STCCP
Control component GUI

(client)

Abstractionlevel
(LQL)

tc

Figure 1:Overview of the software.

2.1 Client and Graphical User Interface

The Graphical User Interface, GUI, is the inferface with which the user changes the server
component’s traffic control settings. The GUI consists of 4 parts: a main graphical user in-
terface part, a communications part, XML data structure and the XML and XML Schema
parser part, which are all implemented using Java 1.5 [Sun04]. The main graphical user
interface consists of the classes GUI, TreeNode, AttributeField, NiceBox and TextWin-
dow. The communications part consists of the classes Connection and Message. Classes
XMLAttribute, XMLAttributeType, XMLElement, XMLElementGroup and XMLEle-
mentType are used to represent the internal data structure. the XML parser part is in
one class, XMLParser. Unfortunately there is no class diagram of this structure, but ex-
cept for the data structure classes it is similar to the older architecture developed by the
Paketti group. Figure2 shows a representation of the old GUI architecture.

The data concerning the traffic control settings includes the following:

• A group of elements such as RED qdisc, HTB class etc.

• The values of each element’s related attributes.

• The element structure, which is a tree.

3

GUI

mAttributePane : JScrollPane

mMenuBar : JMenuBar

mSystemMenu : JMenu

mHelpMenu : JMenu

mCommitMenu : JMenuItem

mLoadMenu : JMenuItem

mScriptMenu : JMenuItem

mStatsMenu : JMenuItem

mQuitMenu : JMenuItem

mAboutMenu : JMenuItem

mExportXMLMenu : JMenuItem

mImportXMLMenu : JMenuItem

mImportTCMenu : JMenuItem

<<create>> GUI(connection: Connection,xmlParser: XMLParser)

initMenu(menubar: JMenuBar) : void

saveToFile(text: String,title: String) : void

loadFromFile(title: String) : String

addNodeToParent(parent: MutableTreeNode,child: MutableTreeNode) : void

commit() : void

loadFromDaemon(showConfirm: boolean) : boolean

showStatistics() : void

viewAsScript() : void

exportXML() : void

importXML() : void

importTC() : void

transmitMessage(query: Message) : Message

confirmExit() : void

errorDialog(e: Exception,text: String) : void

Connection

mConnectionIP : String

mConnectionPort : int

mSocket : Socket

mOutputStreamWriter : OutputStreamWriter

mBufferedReader : BufferedReader

<<create>> Connection(ip: String,port: int,xmlParser: XMLParser)

openConnection() : void

closeConnection() : void

sendMessage(message: Message,connectionListener: ConnectionListener) : Message

AttributeField

mName : String

mLabel : JLabel

mTextField : JComponent

mContentChanged : boolean

AttributeField(name: String,initText: String,required: boolean,editable: boolean)

getName() : String

getText() : String

setText(text: String) : void

getContentChanged() : boolean

resetContentChanged() : void

Element

mName : String

mIcon : Icon

mPossibleChildren : String[]

mChildValid : boolean[]

mChanged : boolean

<<create>> Element(initValues: HashMap)

updateChildrenValidity() : void

toXML(pruneUnchangedInterfaces: boolean) : String

toXML(xml: StringBuffer,pruneUnchangedInterfaces: boolean) : StringBuffer

getName() : String

getIcon() : Icon

getAttributes() : JComponent

getValidChildren() : String[]

getContentChanged() : boolean

resetContentChanged() : void

insert(child: MutableTreeNode,index: int) : void

remove(index: int) : void

Message

mType : String

mData : String

<<create>> Message(type: String,data: String)

getType() : String

getData() : String

getXML() : String

getXMLUTF8() : byte[]

NiceBox

mComponents : Vector

<<create>> NiceBox(labelText: String)

niceAdd(component: JComponent) : void

niceComponentCount() : int

getNiceComponent(index: int) : Component

Paketti

DTD_FILE : String

main(args: String[]) : void

TextWindow

mTextArea : JTextArea

mSave : JButton

mOk : JButton

<<create>> TextWindow(owner: GUI,title: String,content: String)

getText() : String

setText(text: String) : void

XMLParser

mElementTypes : Hashtable

<<create>> XMLParser(dtdFileName: String)

createEmptyElement(type: String) : Element

parseXML(xml: String) : Element

parseXMLChildren(domnode: Node,parent: Element) : void

getAttributes(node: Node) : HashMap

createElement(node: Node) : Element

parseSTCCP(stccpString: String) : Message

getNodeText(node: Node) : String

JTree

1
1

1

1

0..*

1
*

1

1..*

Figure 2:Old GUI architecture class diagram.

4

Elements are represented using the TreeNode class which is instantiated respectively to
every created element. TreeNode object contains the element’s related data in separate At-
tributeField objects. TreeNode stores the AttributeFields in a convenient graphical com-
ponent NiceBox, which is the actual graphical component rendered in the GUI right hand
panel. Thus every TreeNode contains a NiceBox which contains a set of AttributeField
objects.

TreeNode extends Java’s DefaultMutableTreeNode, which gives the ability to store the
nodes in a tree structure using the DefaultMutableTreeNode method add. This tree struc-
ture is compatible with the JTree object in the GUI left hand frame and can thus be ren-
dered directly.

AttributeField represents a single attribute or parameter value of an element visually. It
has a JLabel for name and a JTextField and/or a JComboBox for data input. Additionally
a help button is visible for editable attributes. AttributeField also handles unit conversions
for the input data to support most input types used by the tc command.

Both TreeNode and AttributeField are backed by an internal data structure. TreeNode
represents XMLElement and AttributeField represents XMLAttribute objects. The whole
data structure is governed by the paketti.xsd XML Schema document. XMLElement and
XMLAttribute objects contain data: XMLElement contains other XMLElement and XM-
LAttribute objects and XMLAttribute contains a single attribute value. The structure of
these objects is however defined by separate XMLElementType and XMLAttributeType
objects that represent complexType and simpleType definitions in the Schema. These def-
initions are parsed into XMLElementType and XMLAttributeType objects in the XML-
Parser class. For more details on the Schema data types, see comments in the pakettid.xsd
file.

The data communication makes it necessary to encode and decode the settings data be-
tween XMLElement/XMLAttribute and XML (String) representations. An XMLEle-
ment object can return an XML representation of its subtree using the recursive method
toString. Conversion to the other direction, from text to data structure is handled in class
XMLParser by first using DOMParser in Xerces to parse the String into DOM nodes and
then recursively creating XMLElement and XMLAttribute objects. The XML document
is validated before sending it to pakettid by the Xerces XML Schema validator.

Error situations are handled using exception classes XMLParserException and Connec-
tionException. ConnectionException is thrown in class Connection when a communica-
tion error occurs. XMLParserException is thrown when any error occurs in class XML-
Parser. The exceptions are handled in GUI by invoking the method errorDialog to show
the exception contained error message.

2.2 Server

The server component runs in the host computer whose traffic control settings are to be
configured. It responds to the client component’s requests and executes proper commands
such as getting the current traffic control settings from the kernel and committing changed

5

traffic control settings to the kernel.

The server is started as part of the normal system init process. Upon startup, the server
reads a configuration file specified by a command line parameter. Using the values ob-
tained from the configuration file, the server locates its state file, which contains the last
commited traffic control settings.

If the state file is not found, the server will assume that the previous state is the “empty”
state – all traffic control settings are at their defaults. If the state file is found, the server
will parse it and use the tc command and kernel interface to set up the active traffic control
settings according to the state file. It will then fork a child process into the background.
This child process will handle incoming STCCP connections.

After startup, the server provides the following functionality:

• Fetching the current traffic control settings and sending them back to the client in
XML or TC format. (GET_SETTINGS_XML, GET_SETTINGS_TC).

• Committing traffic control settings sent by the client. (COMMIT)

The main functionality is in the file pakettid.cc, which starts the paketti daemon, pakettid.
Pakettid.cc takes care of the communications with the client, using the functions in stccp.c
to construct, decode, send and receive valid messages. Pakettid.cc uses the other c- and
cc-files in order to serve the users requests. Pakettid can be configured in different ways,
as described in the Users Manual [Pg04b]. Only one user at a time can be changing the
traffic control settings of a single host.

An XSL Transformation stylesheet is used to tranform the current bandwidth settings into
tc commands. The transformation is done by using libxslt. When the client executes com-
mit, the server transforms the XML form of the traffic control settings to be committed
into tc commands and executes them. The server also saves the most recent committed
settings, so that it can execute those settings after the computer has been shut down. If
there is an error during the commit-phase, the server component reverts to the most recent
working settings. This atomic commit behaviour exists to avoid having an incomplete or
non-working setup. While it protects against some errors by rolling back the settings to
the previously know working state on error, it cannot prevent the user from making valid
settings that have undesired effects.

3 Simple Traffic Control Configuration Protocol

Simple Traffic Control Configuration Protocol (STCCP) is an application level protocol
for transmitting traffic control settings and statistics. Version 1.0 was defined by the
Paketti software project group [Pg03]. Version 2.0 is defined by the Paketti2 software
project group [Pg04a]. The protocol is based on the Client-Server Model architecture on
TCP/IP and encodes the request and reply data in XML frames.

6

3.1 Model of Operation

The model of operation for transmitting the settings is as follows:

Step 1: Client opens a TCP connection to server.
Step 2: Client transmits a request to server.
Step 3: Server transmits a reply to client.
Step 4: Repeat steps 2 and 3.
Step 5: Client transmits a QUIT request and closes the TCP connection.

3.2 Message Structure

An STCCP message contains the following valid characters:

• LF line feed, hex decimal 0xA, decimal 10.

• integer a non-negative integer k in range0 <= k < (232 = 4294967296).

• character an arbitrary character of UTF-8 charset.

• string an arbitrary sequence of characters approved by XML syntax.

STCCP messages utilize UTF-8 charset. The messages are divided into a header and a
body (XML frame). The header consists of exactly two lines, as shown:

version_number LF
length LF
xml_frame

The version_number field is of the following form:

Protocol:STCCP/integer

The value of the integer is 1 in the first version, 2 in the second and so on. The length
field is of the following form:

Length:integer

The value of integer corresponds to the total length of xml_frame in bytes. The structure
of the last field, xml_frame, is defined in section3.3.

An example STCCP message of the type GET_STATISTICS_TC:

Protocol:STCCP/2 LF
Length: 54 LF
<MESSAGE><TYPE>GET_STATISTICS_TC</TYPE><DATA /></MESSAGE>

3.3 XML Frame Structure

Requests

7

The following defines each request along with its message type, the corresponding server
reply and possible error conditions. The server replies with a message of type REPLY if
the request was accepted, otherwise with type ERROR. The error conditions common to
all requests are listed in the definition of ERROR reply.

HELLO

<MESSAGE><TYPE>HELLO</TYPE><DATA /></MESSAGE>

• Description HELLO starts the communication between the client and server. The
server may ignore the message DATA element which should be empty.

• Reply The client may ignore the data element. Server replies either with a REPLY
message, when the connection is accepted, or with an ERROR message, when the
connection is rejected. The connection is rejected when there is already some user
connected to the server or another error occurs.

GET_SETTINGS_XML

<MESSAGE><TYPE>GET_SETTINGS_XML</TYPE><DATA /></MESSAGE>

• Description GET_SETTINGS_XML requests the current traffic control settings in
XML form. The server may ignore the message DATA, element which should be
empty.

• Reply The DATA element contains the traffic control settings in XML form.

GET_SETTINGS_TC

<MESSAGE><TYPE>GET_SETTINGS_TC</TYPE><DATA /></MESSAGE>

• Description GET_SETTINGS_TC requests the current traffic control settings as
a tc script. The server may ignore the message DATA element, which should be
empty.

• Reply The DATA element contains the traffic control settings in a tc script. The tc
commands are separated with line feeds.

GET_STATISTICS_XML

<MESSAGE><TYPE>GET_STATISTICS_XML</TYPE><DATA /></MESSAGE>

• DescriptionGET_STATISTICS_XML requests statistical information in XML form.
The server may ignore the message DATA element, which should be empty.

• Reply The DATA element contains statistical information in XML form.

GET_STATISTICS_TC

<MESSAGE><TYPE>GET_STATISTICS_TC</TYPE><DATA /></MESSAGE>

8

• Description GET_STATISTICS_TC requests statistical information in the form
output by tc. The server may ignore the message DATA element, which should
be empty.

• Reply The DATA element contains statistical information in the form output by tc.

COMMIT

<MESSAGE><TYPE>COMMIT</TYPE><DATA>string</DATA></MESSAGE>

• Description COMMIT requests server to run the accompanied traffic control set-
tings into the target system. The DATA element contains the settings to be run in
XML form.

• Reply The DATA element contains the settings that were run in XML form.

• Error DATA element is empty.
DATA element contains malformed XML.
The settings to be run contained by DATA element are invalid.
An error occured while running the settings.

QUIT

<MESSAGE><TYPE>QUIT</TYPE><DATA /></MESSAGE>

• Description QUIT notifies server that the connection will be closed. The server
may ignore the message DATA element, which should be empty.

• Reply It does not matter how the server replies. The server doesn’t even have to
reply.

Replies

REPLY

<MESSAGE><TYPE>REPLY</TYPE><DATA>string</DATA></MESSAGE>

• Description The server transmits a REPLY message in response to every accepted
request except to a QUIT request. If the request type implied reply data, the data is
contained in DATA element.

ERROR

<MESSAGE><TYPE>ERROR</TYPE><DATA>string</DATA></MESSAGE>

• Description The server transmits an ERROR message if the received request was
not accepted for some reason. The reply DATA element contains additional infor-
mation why the error occured.

9

The following possible error conditions are possible to all requets:

• The request format was invalid, and

• Server internal error occured while processing the request.

4 Known Problems

The project testing phase revealed some problems which we were unable to fix during the
project. The problems are documented in this section.

4.1 Problems in Client Component

1. The GUI class has grown too large and there is quite a lot of duplicate code that could
be joined together more intelligently.

2. Transform.java is hard to expand or change to handle new qdiscs and other elements.
It barely manages to convert TC scripts written using the XSLT transformation. In real
life TC scripts are much more complicated and importing them requires better tools. It is
probably neccessary to write the whole TC->XML converter again from scratch.

4. Convenient usage of class and hashtable handles in the GUI is only partly implemented
and will not work reliably. Also some field values like the TBF latency are too restricted.
Others are not restricted enough. Much more intelligence should be added for the GUI to
be easy to use.

5. The Help document is not finished. Also a division to separate sections for different
elements is neccessary.

6. Handling of errors and warnings is not unified. Warnings are only reported in the
console, which may make some tasks difficult. A status bar for showing warnings on the
GUI would be most welcome. Most errors should be displayed in a dialog window, but
currently there are some which are not.

4.1.1 Transform TC to XML

Transformation from tc to XML is coded in a very unpleasent way. The code is very
simple, but if the syntax of the tc-script is not appropriate for the transformation-method,
then there can be many incorrent values in the XML. This is partly due to the lack of
documentation about tc-tool and also due to the lack of complete understanding of the tc-
script syntax. If the syntax of the tc-script was accurate, then there were no errors found.
See the usersmanual for specific syntax of the understood tc-syntax.

10

4.2 Problems in Server Component

4.2.1 Memory leaks

A substantial amount of memory leaks were detected, isolated and fixed during the testing
phase. However, the software still leaks a small amount of memory. We were unable to
trace the origin of these memory leaks. There are two possibilities.

• the leak is in the libxml library, or

• the leak is so severe that the stack gets badly corrupted, making it very hard to trace
the real origin of the leak, but it is still in the pakettid software.

Since we were unable to fix these leaks, we will include the information obtained by a
memory debugging tool (valgrind) in the hope that they might be resolved in the future.

==10426== 20 bytes in 4 blocks are definitely lost in loss record 21 of 71
==10426== at 0x1b904edd: malloc (vg_replace_malloc.c:131)
==10426== by 0x1b9a6ba5: xmlStrndup (in /usr/lib/libxml2.so.2.6.11)
==10426== by 0x1b9a6c33: xmlStrdup (in /usr/lib/libxml2.so.2.6.11)
==10426== by 0x1b9a7316: xmlStrcat (in /usr/lib/libxml2.so.2.6.11)

...

==10426== 1190 bytes in 5 blocks are definitely lost in loss record 52 of 71
==10426== at 0x1b904edd: malloc (vg_replace_malloc.c:131)
==10426== by 0x1b9a6ba5: xmlStrndup (in /usr/lib/libxml2.so.2.6.11)
==10426== by 0x1b9eac8a: xmlDocDumpFormatMemoryEnc (in /usr/lib/libxml2.so.2.6.11)
==10426== by 0x1b9eadcb: xmlDocDumpMemoryEnc (in /usr/lib/libxml2.so.2.6.11)

...

==10426== LEAK SUMMARY:
==10426== definitely lost: 1210 bytes in 9 blocks.
==10426== possibly lost: 0 bytes in 0 blocks.
==10426== still reachable: 286548 bytes in 1454 blocks.
==10426== suppressed: 200 bytes in 1 blocks.

4.2.2 The Arena memory handler

The Arena memory handler is well-intended; it is supposed to isolate all memory handling
to one place. In a way, it is a primitive garbage collector that accumulates allocated
memory during the execution of a program, and then frees it all after processing is done.

However, this kind of behaviour is not suitable for a long-running server process. There-
fore, the Arena memory handler should be replaced. A good alternative would be the

11

Boehm Garbage Collector for C and C++ [Boe04], or some other garbage collector li-
brary.

Also, we have been unable to verify that the leaks mentioned in Section4.2.1 do not
originate from Arena.

4.2.3 Fundamental design flaws

The single most grave problem in the server component is its inconsistent design. The
server handles internal data using several different data structures. We have been able to
identify three different kinds of data structures for handling the same internal data.

The first data structure used is a memory block with null-delimited fields. This is used
to pass around various kinds of data, such as tc commands, lists of interfaces, and traffic
control settings in tc form. The data structure is created by asking for a fixed-size block
of memory from the “arena” memory handler, implemented in arena.h and arena.c. The
data block is then populated by copying char data into it.

The block functions as a primitive structure, where each member is delimited by a null
character. Member access is based on either direct or dynamic access. In direct access, the
fields are of a known fixed length, and access is thus only pointer arithmetic. In dynamic
access, parts of the block are scanned to determine where the start of a field is. However,
since the block structure is not documented, it is difficult to know when a particular block
is intended to have fixed or dynamic fields.

The second data structure used is the rare occurrence of a real struct. In most parts of the
code, the use of structs is very sparse, and can be easily understood.

The third kind of data structure is an XML tree provided by libxml. The XML tree
represents system settings, network interfaces, TC filters, classes and queuing disciplines.
In many cases, the code centers around such a tree, and consists mostly of traversing
it or populating it. The use of this tree can be well understood by reading the libxml
documentation and the pakettd code.

However, putting these pieces together has made the code both harder to understand as
well as, in our opinion, larger. The conversion between the different data structures forms
a significant part of the code. We were unable to correct this problem, since we did
not understand its implications until very late in project. We have attempted to begin
improving the internal architecture of the program, but did not complete this work.

It is probable that using the XML tree as the primary data structure would help this prob-
lem. Most of the operations in the pakettid server can be reduced to getting data from
a source (network, kernel, file, etc.) and putting it into the XML tree, or retrieving data
from the XML tree and outputting it to a destination (network, kernel, file).

12

4.3 Other Problems

There are several other problems that are, in one way or another, related to the design flaws
described in the previous section. For example, to implement the GET_SETTINGS_XML
function, the pakettid server first obtains the current TC settings by calling the tc command
with the appropriate parameters. Then, the output of the tc command is parsed into the
tc commands that would generate those settings. Finally, the tc commands are parsed
and an XML document is created. The structure is very inflexible, and, for example,
cannot actually get all settings from the tc command, since this would involve multiple
invocations of the command with different parameters, which was not anticipated in the
original design. Thus, pakettid cannot, for example, be easily extended to support ingress
filtering. If the tc command must still be used in the future, transform.c should probably
be rewritten, preferably in a higher-level language.

5 Suggestions for Future Improvements

This section makes suggestions for future upgrades on the software.

5.1 Client Component

• Improve visualization of the traffic control settings. Go from entering values into
fields to directly manipulating settings by actions in the user interface. Use sliders
to alter numerical settings, drag-and-drop to chain filters, classes and qdiscs, and
visualize the packet processing pipeline.

• Write a web interface or a GTK+ GUI.

• Support for new languages.

• A wizard to guide beginners with the use of the client component.

• Statistics about recently made changes.

• Show traffic statictics visually.

• Ability to simulate the management settings before committing them.

• Ability to change traffic control settings on a number of hosts without having to
disconnect and connect to a new host every time. Also requires improvements to
the GUI.

5.2 Server Component

• Improve the internal architecture of the server.

13

• Remove the usage of TC-command completely and use only the linux kernel API
for managing traffic control settings. Modify the server component to use for ex-
ample LQL [Sie04].

• Add more filters and qdiscs.

• Add support for iptables, ifconfig and route.

• Add support for other interfaces than eth.

• Possibly split the server into a kernel library component such as LQL, and a small
and simple server component written in a high-level language such as Python.

5.3 Simple Traffic Control Configuration Protocol

• Compress the STCCP-message, so it will use less space.

• Encryption of the message.

• Add authentication for the communication.

• Redefine the protocol to be line-based to avoid locking problems. The protocol
could be asynchronous and use tagged commands or chunking to facilitate parallel
operations.

• Alternatively, redefine the protocol to run over XML-RPC. This would automati-
cally provide capabilities like compression, encryption and authentication, depend-
ing on the chosen implementation.

5.4 Other Improvements

• User authentication using digital signatures or passwords. However, since TC is
probably always handled by users who have root access, SSH tunneling may allow
sufficient authentication control. For a web interface SSL would be neccessary.

6 Vocabulary

traffic control network traffic management to better provide QoS

client client side of the client-server-model. See also client
component.

client component component with which it is possible to change the host com-
puters traffic control settings. Uses a GUI.

14

control component Sofware which runs in the host computer. Management set-
tings of this computer are going to be changed.

daemon A process which runs for a long period of time. Executes
the clients requests.

Filter tool to divide flows to proper classes.

Flow A flow of data between client and server.

forking a new child process which shares its parent resources.

Graphical User Inter-
face, GUI

graphical software with which you can change traffic con-
trol settings.

Host target computer.

Kernel The core of the operating system.

Linux open source operating system.

paketti client component of the software. Also used to describe the
software which includes both the paketti and pakettid.

pakettid the server component.

Quality of service,
QoS

A set of traffic control settings, which are used to improve
the performance of certains flows.

queue disc, qdisc

Reply Reply message to the client from the server.

request Request message from the client to the server.

server See daemon.

server component see pakettid.

Software Paketti and pakettid.

STCCP Simple Traffic Configuration Control Protocol. Protocol
defined by Paketti-group and modified by Paketti2-group.
Used to exchange STCCP-messages between the client and
server component.

STCCP-message A message which is defined by STCCP. Either a request or
reply.

user person who uses the client-component and possibly changes
the traffic control settings of the host computer executing
the control component.

XML-document A tree-like data structure used to save and move data. Con-
sists of inner elements, element attributes and text data.

XML-RPC XML Remote Procedure Call. An XML- and HTTP-based
communication protocol that facilitates writing distributed
applications.

15

XML Schema XML-language based definition language. Used to restrict
XML-documents according to specified rules.

XSL Extensible Stylesheet Language.

XSLT XSL Transformations. Language which can be used
to transform almost any XML-document to non-XML-
documents, for example to PDF-documents.

References

Boe04 Boehm, H. J., A garbage collector for c and c++, 2004. URLhttp://
www.hpl.hp.com/personal/Hans_Boehm/gc/ .

FSF91 Gnu general public license, 1991. URLhttp://www.gnu.org/
licenses/gpl.html .

FSF99 Gnu lesser general public license, 1999. URLhttp://www.gnu.org/
licenses/lgpl.html .

Pg03 Paketti-group, Suunnitteludokumentti (in finnish), 2003. URLhttp:
//www.cs.helsinki.fi/group/paketti/dokumentit/
suunnitteludokumentti.ps .

Pg04a Paketti2-group, Suunnitteludokumentti (in finnish), 2004. URL
http://www.cs.helsinki.fi/group/paketti2/doc/
suunnitteludokumentti.pdf .

Pg04b Paketti2-group, Users manual, 2004. URLhttp://www.cs.
helsinki.fi/group/paketti2/doc/usersmanual.pdf .

Sie04 Siemon, D., Lql-libarary homepage, 2004. URLhttp://www.
coverfire.com/lql/ .

Sun04 Javatm 2 jdk, standard edition, 5.0, 2004. URLhttp://java.sun.
com/j2se/1.5/docs/index.html .

http://www.hpl.hp.com/personal/Hans_Boehm/gc/�
http://www.hpl.hp.com/personal/Hans_Boehm/gc/�
http://www.gnu.org/licenses/gpl.html�
http://www.gnu.org/licenses/gpl.html�
http://www.gnu.org/licenses/lgpl.html�
http://www.gnu.org/licenses/lgpl.html�
http://www.cs.helsinki.fi/group/paketti/dokumentit/suunnitteludokumentti.ps�
http://www.cs.helsinki.fi/group/paketti/dokumentit/suunnitteludokumentti.ps�
http://www.cs.helsinki.fi/group/paketti/dokumentit/suunnitteludokumentti.ps�
http://www.cs.helsinki.fi/group/paketti2/doc/suunnitteludokumentti.pdf�
http://www.cs.helsinki.fi/group/paketti2/doc/suunnitteludokumentti.pdf�
http://www.cs.helsinki.fi/group/paketti2/doc/usersmanual.pdf�
http://www.cs.helsinki.fi/group/paketti2/doc/usersmanual.pdf�
http://www.coverfire.com/lql/�
http://www.coverfire.com/lql/�
http://java.sun.com/j2se/1.5/docs/index.html�
http://java.sun.com/j2se/1.5/docs/index.html�

