
Automated management of inter-organisational applications

Lea Kutvonen
Department of Computer Science, University of Helsinki

P.O. Box 26 (Teollisuuskatu 23), FIN-00014 UNIVERSITY OF HELSINKI
Lea.Kutvonen@cs.Helsinki.FI

Abstract

Inter-organisational applications require improved sup-
port from middleware services. This paper analyses the
management requirements of multidomain applications,
covering both technological domains and organisations
(administrative business domains). The analysis leads to a
suggested middleware solution for these needs, presenting a
group of cooperative, pervasive management services that
use a common, abstract management language suitable for
expressing platform-independent model of cooperation be-
tween sovereign components and contracts about selected
technologies. The approach is compatible with OMG MDA
(Model Driven Architecture) work.

1 Introduction

Global systems and inter-organisational cooperation are
essential requirements for current IT systems. Current mid-
dleware solutions already provide reasonable support for
managing the technological heterogeneity of operating sys-
tems and network solutions and for adapting to dynamic
changes in available resources. However, management as-
pects related to inter-organisational cooperation schemes
still require improved support.

Because the operating environment is a distributed and
heterogeneous environment covering multiple technology
domains and multiple administrative domains, the middle-
ware should address two levels of management services.
Locally, for administering each technology domain, there
is a need for component and service management, address-
ing issues such as lifecycle services and surveillance. In
addition to this, new cooperative management services are
needed for inter-organisational applications. The cooper-
ative management of applications should include common
application management facilities such as lifecycle, compo-
nent location and (re)configuration. An essential issue to be
solved is the control and maintenance of interoperability.

In a multi-organisational environment, the challenges

stem from the sovereignty of systems. In a sovereign sys-
tem, decisions – for example on application-level opera-
tional policies, platform architecture, object models, au-
thorization policies and communication protocols – can be
done independently from other systems. Further difficulties
encountered by inter-organisational applications include the
need to adapt to the constant change in potential partners
and the independently driven development of services in
each of these systems.

These requirements lead us to a solution, where appli-
cation federations are established by demand and are dy-
namically configurable. We consider a federated system
– that provides a service or represents an application – to
be composed of sovereign services [16, 17]. A service is
sovereign when it is provided by an autonomous organi-
sation and supported by an autonomously administered IT
system. Therefore, this approach does not build on admin-
istrative, platform-level decisions or heavy bridges that ac-
quire an integrated, homogeneous computing environment.
Focusing on services alone makes the approach in many
respects similar to component-based approaches, although
there is no strong requirement for component support from
the platform on which service providers are running.

The inter-organisational application management is
based on explicitly stated, platform-independent contracts
– federation contracts – that define the forms of cooperation
between performing components. The application structure
is defined as a business architecture model, in terms of roles,
interactions between the roles and policies governing alter-
native interaction sequences. Roles are populated even as
late as at application runtime.

The preparation of a federation contract focuses on cap-
turing a shared understanding of business logic and seman-
tics of the services exchanged. The selection of members
of a federation is further restricted by the technical require-
ments of each member, in respect to their needs for mutual
communication.

The cooperative management approach suggested in this
paper provides facilities for coherent application compo-
sition methodology ranging from design time to runtime.

For inter-organisational applications, the automatic discov-
ery of new service components and new organisations is es-
sential. In addition to discovery, application programmers
need automatic tools for ensuring that interoperability fa-
cilities exist and business processes are respected, and for
controlling the deployment, activation and accessibility of
the supported services, without authority for direct manage-
ment actions at distinct domains.

The approach has aspects of software engineering
methodologies as well as runtime environment support in
form of middleware services. This paper does not discuss
the software engineering aspects at any deeper level, but
one structural expectation deserves to be mentioned: We
expect that component-based software engineering provides
explicit and separate connector (binding) elements in addi-
tion to application components. This allows us to separate
the issues of service types describing aspects of business
logic and the issues of binding types describing structures
within communication subsystems.

The cooperative management services are expected to be
pervasive and based on a common, abstract management
language. A pervasive service is available at each platform,
regardless of the platform technology. Examples of cur-
rent pervasive services include process management, nam-
ing services, and directory services. New management ser-
vices include application composition, cross-domain con-
figuration of operational policies, management of complex
and dynamic bindings, and technology-independent inter-
faces for component life-cycle services. Because contracts
are expressed across heterogeneous technology domains,
the management language must be technology independent.
At each domain an agent maps the contract expressions to
technology-dependent solutions for that domain.

This paper focuses on cooperative, pervasive manage-
ment services in response to OMG CORBA Management
RFI [22]. However, the model is directly applicable to any
other platform as well; there are no CORBA-specific re-
quirements. The model presented is in line with the OMG
model driven architecture (MDA) [21, 25, 27, 23] scheme,
and RM-ODP (Reference Model of Open Distributed Pro-
cessing) [10, 11] view of middleware services. This pa-
per presents ideas under study and prototyping in Pilarcos
project at the University of Helsinki [17].

The MDA is a vision statement on how OMG standards
evolve in a coordinated fashion for improved interoperabil-
ity and integration. The MDA discusses the needs of soft-
ware engineering processes; interoperability and integration
of applications and services so that portability of design and
implementation are supported, and interoperability of im-
plementations based on same design on different platforms.

The RM-ODP standard by ISO and ITU defines – in
addition to terminology and viewpoints – a middleware
model ([11], clauses on engineering viewpoint, functions

and transparencies) that can be used to support inter-
organisational applications. Key service elements there in-
clude trading service [20] for service discovery, type repos-
itory service [9] for storing type definitions and decid-
ing about their mutual conformance, and binding frame-
work [12]. Common language concepts of domains, com-
munities, and federations support organisation of the inter-
operability solutions. Federation contracts based on the ex-
plicit business architecture descriptions give an interesting
application to the ODP enterprise language [13].

The Pilarcos project (Production and Integration of
Large Component Systems) develops middleware solutions
for automatic management of inter-organisational applica-
tions. The federated architecture requires advanced mid-
dleware services for contract negotiation, for distributed
startup of services, and for establishment of heterogeneous
communication channels. The Pilarcos project prototypes
these services, mostly in a CORBA environment.

The rest of this paper is structured as follows. Sec-
tion 2 addresses the requirements for cooperative manage-
ment services and the expectations set by them to the local
management services. Section 3 outlines the cooperative
management services, and the local services expected, to-
gether with the meta-information model elements related to
them. Section 4 gives an overview of the suggested man-
agement approach with examples drawn from the Pilarcos
project. Section 5 concludes the presentation by some re-
lated work and standardization issues.

2 New management requirements

The requirements for inter-organisational management
services are discussed starting from the challenges of co-
operative management. Four areas are identified to form
separate management areas: control of the "global" appli-
cation structure, control of the member components, testing
the interoperability of the members, and running the inter-
operability facilities.

2.1 Expectations and challenges

We expect inter-organisational applications to have sim-
ilar level of management support from platform services as
applications restricted to a single domain. Application man-
agement is generally considered to include

� software engineering support for application produc-
tion, such as reuse mechanism and composition of ap-
plications from components;

� application and component version management; and

� application installation, instantiation (startup), config-
uration and termination.

For inter-organisational applications, the task is compli-
cated by two types of domains involved. First, there is tech-
nological heterogeneity, while applications cross platform
domains. Separate platform domains can present different
component models, language environments, transparency
and quality of service levels of platform services, and com-
munication protocols. Second, there is business-related
heterogeneity, while applications cross administrative do-
mains. Separate administrative domains present indepen-
dent development and deployment of services, sovereignty
of business policies (operational decisions) that affect coop-
eration patterns, and authorization policies.

Furthermore, the task of inter-organisational manage-
ment is complicated by the asynchrony of development
steps in each organisation. The composition and commu-
nication mechanism must therefore be flexible enough to
allow late discovery and binding of services.

We approach the application management goal by seek-
ing solutions for the following management challenges.

� Creating an information element – a federation con-
tract – that defines the application structure and the
mutual interaction patterns of its components so that
the contract can be used for governing the component
services locally at each domain.

� Selecting the performing components for an applica-
tion, so that the process takes into consideration shared
business logic, conformity of components, and poten-
tial of successful communication between them.

� Uniform deployment and instantiation of components
in a multidomain environment (both technical and or-
ganisational domains involved).

� Distributed deployment of bindings between peer
components in a multidomain environment (both tech-
nical and organisational domains involved). This in-
cludes automatic configuration of channels and inser-
tion of necessary interceptors and bridges into them.

2.2 Federation contract issues

Inter-organisational applications need to be managed
based on explicitly stated, platform independent contracts.
The contract must capture the platform-independent struc-
tural model for the application. The contract must also cap-
ture the performing components, in terms of their services
and technological properties, or alternatively, in terms of
their identities and locations.

Modern IT systems are expected to run nonstop appli-
cations. For example, telecom service providers cannot af-
ford downtime for system upgrade, and may not be able to
synchronize version changes across the network. Because
the providing organisations are autonomous and can change

versions asynchronously, multiple versions of components
should be present and available simultaneously. Therefore,
application components should be replaceable while the ap-
plication (federation) is active, and if the upgrade of a com-
ponent fails for some reason, the system should default back
to the latest working configuration.

Thus, it is essential that the contract can change during
the application lifetime: components can be changed be-
cause of upgrade needs or failures. For example, an up-
graded service component can be introduced to the system,
to coexist with previous versions as an independent ser-
vice. The software engineering history of the component
is not relevant for the runtime environment. The applica-
tion can be triggered to component upgrade. The new com-
ponent can be started, configured and prepared for quick
switchover without affecting the running application. If the
new component does not fit in into the application envi-
ronment, it does not pass the phase where interoperability
and conformance tests are performed, and the upgrade event
fails and the application continues to use the old configura-
tion.

Also related to the need for nonstop applications there is
a requirement of allowing the application structure to evolve
while the application is active. For example, a banking ap-
plication can alternate between two phases, one for opening
time when all interactions are allowed and another for off-
time when only a few services are running. A more techni-
cal example is a new platform service that is introduced and
should be used by applications for additional functionality.

Thus, in terms of the federation contract, there is a need
for separate epochs. An epoch is a period where a defined
set of services are provided and the community of compo-
nents working towards that goal remains stable in structure.

2.3 Component selection issues

Selecting components for the application involves tests
for component conformity. Conformity of components
covers questions such as interface type matching, compo-
nent behaviour compatibility and contract breaches, and ex-
pected binding semantics, to mention a few. In a multi-
organisational environment, components involved in a fed-
eration cannot inherit properties that would ensure interop-
erability between components. Therefore, several levels of
interoperability problems must be solved based on explicit
meta-information exchange.

First, the participants should have matching views of the
logical business process they are involved in and match-
ing policy decisions where alternative cobehaviour models
are possible. For example, in a tourist service application,
where clients can make hotel reservations through a tourist
office, there might be alternative payment methods, such as
prepaid vouchers for hotels or credit card payment after the

visit, embedded as alternative behaviours into a shared ap-
plication logic.

Second, there should be matching views of the compu-
tational communication solution involving the participants.
For example, a payment interaction can be computationally
implemented by a sequence of protocol messages between
buyer, seller and bank, and each party should have similar
assumptions about the message formats and ordering; if not,
some bridge solutions should be used between the parties
for creating a coherent view.

Finally, there should be matching views of the engineer-
ing of the communication mediating solutions. For exam-
ple, each party expects the transport protocol to preserve
message sequences or support transaction transparency; if
that is not the case at some domain, additional services can
be used to intercept and upgrade the transport service.

Because the component interoperability matching should
ensure technical interoperability, matching application in-
terface structures is not sufficient alone. The underlying
communication platform properties and the set of support-
ing protocols must be matched too. A concept of binding
type or connector (e.g., [3, 2]) captures the set of related
interfaces at peer components, and communication patterns
between those interfaces. For complex binding needs, the
binding type is considered as an integral part of an extended
component interface description. For example, a heteroge-
neous networking environment, stream interfaces and mul-
tiparty communication all present complex bindings.

The conformance testing should in principle be based on
specification matching, but this is too heavy for runtime
usage. Instead, the matching can be supported by a two-
sided repository service: one one hand, slow specification
matches can be performed semiautomatically and the result-
ing relationships stored, and on another hand, a name-based
matching process is provided for runtime matching.

2.4 Deployment and instantiation issues

Uniform deployment of components in a heterogeneous
environment is possible when based on platform indepen-
dent descriptions of components and on a defined mapping
onto specific platforms. For example, a service type de-
scription only reveals the kind of interface a client inter-
acts with, but there are numerous alternatives for provision
of that service, ranging from a monolithic object to a dis-
tributed configuration with replication for load balancing.

The models and mappings can be used in a software
engineering process resulting in an application implemen-
tation on a specific platform, as intended in the MDA.
The MDA basic concepts are a platform-independent model
(PIM) of the application business logic and a platform-
specific model (PSM) that faithfully supports the PIM but
also includes implementation design details for a specific

platform. Semiautomatic tools are planned for making the
PIM to PSM translation easy. The tools are based on stan-
dard patterns for implementing some computational fea-
tures.

However, the models and mappings can also be used as
a reuse mechanism that matches together service require-
ments in a federation contract and service providing com-
ponents. Here, the whole PIM is not directly mapped to a
single PSM. Instead, the PIM is split into parts (business
architecture roles), each of which match onto a set of alter-
native PSMs. It is not necessary to have all partial PSMs
selected for the same platform technology, but intermediate
PSMs can be inserted where necessary.

The mapping process from the whole PIM to a complete
PSM can be automated. The relationships between partial
PIMs to corresponding PSMs need to be stored into a repos-
itory as well as the intermediate PSMs available.

In this paper we focus on the reuse style. The business
architecture definition introduces requirements for the com-
ponents to be selected, either at design time or at runtime.
However, the approaches are not exclusive, but can be com-
bined.

2.5 Federated binding issues

Current trend in component-based software engineering
requires, with good reason, that connectors between compo-
nents become first class elements in software architectures.
However, the bindings between two or more component in-
terfaces can be viewed both at computational and engineer-
ing levels. The computational level can be considered to be
visible for application component programmers, the engi-
neering level only to system service programmers.

At the computational level, we choose to consider bind-
ings as component relations with some properties, such as
binding type, QoS agreements and transparency support ex-
pected from the underlying communication platform. The
properties can be inherent for the programming language
concepts or system environment. At engineering level, we
choose to use an explicit binding object to model the com-
munication connection. The binding object captures the
binding properties in an explicit, technology-independent
contract.

The federated bindings are also governed by contracts.
A binding contract captures the binding type supported and
the required structure of the communication channel. The
communication channel structure is determined by identify-
ing the transparency support required, transport protocols,
and peer component locations.

For the multidomain environment the model has to be
extended so that the abstract binding object is in fact sup-
ported by a group of cooperating, domain specific binding
objects. To overcome the technical differences between do-

mains, the bindings are managed according to the agreed
binding contract that is expressed in platform-independent
terms. At each domain, local mappings from the contract to
the implementation can be done separately.

3 Infrastructure services for management

A set of suggested management services, located into
middleware, are briefly presented. Each of these services
manipulates meta-information elements that are expressed
in a universal management language. The meta-information
structure is introduced, together with the requirement anal-
ysis of the language.

3.1 Pervasive management services

Middleware services for management fall into two cate-
gories: cooperative management services for multidomain
applications and local element management services. We
refer to ORBs, CORBA services, applications, and man-
agement applications by the term element.

We suggest that CORBA Management Services would
include the following services.

� Enhanced trader for populating business architectures
with selected components [17]. The business archi-
tecture description contains roles as placeholders for
performing components, and each role description can
be used as a selection rule. However, the selections for
neighbouring roles is not independent, due to, for ex-
ample, the need for shared binding requirements. The
effect of architecture population is that of component
composition or component reuse.

� Standard trading service [20] for maintaining a repos-
itory of service offers, for the use of the enhanced
trader.

� Federation manager for negotiating, maintaining and
renegotiating the federation contract that represents an
application instance.

� Enhanced version of ODP type repository [9] for hold-
ing relationship information between generic types
(service types, binding types, interface types) that are
technology-independent and used for matching pur-
poses and technology-dependent templates that are
used for instantiating the corresponding components
and objects [14]. This mapping information is created
by system programmers separately from business ar-
chitecture descriptions and service offers.

� Service deployer for instantiating components for each
role according to the contract that represents the appli-
cation instance. The service deployer uses type repos-

itory information to map the contract onto appropriate
technology solutions [17].

� Binding factory for instantiating communication chan-
nels between components. Because no remote instanti-
ation service is supported across organisational bound-
aries, the binding factories at each computing sys-
tem involved must cooperate. Again, the factories use
repositories for mapping contract information onto ap-
propriate engineering solutions [17, 16].

� Implementation repository for storing software pack-
aging and maintaining their automatic installation
scripts.

The local element management services add lifecycle
services and local bindings to this list. Other management
services needed for other goals than inter-organisational ap-
plication needs are here omitted.

The cooperative management services – enhanced trad-
ing, trading, type management, federation management,
federated binding – are all services that have a local server
running at each domain. These active agents take care of
making requests to their peers at other domains, as there
is no authority to otherwise invoke management actions
at a foreign domain [15]. The requests carry contracts to
pass relevant meta-information that identifies what should
be done and how.

3.2 Management language issues

The meta-information exchanged by management ser-
vices is an instance of a common, abstract management in-
formation model (MIM). Each component, platform entity
or application is considered as a managed object. Platform-
specific agents maintain the actual management data near
the managed object, and provide a view to it to the manager
according to a shared MIM.

The fundamental MIMs of the multidomain applications
are those of

� federation contract,

� binding contract,

� service offers,

� component descriptors, and

� platform descriptors.

Some structuring rules are common to all MIMs within the
same category, but some structures are dependent on the
type of their elements. For example, the service offer struc-
ture is dependent on the service type in question, and fed-
eration contracts are structured according to the application

structure. Furthermore, as interoperability solutions evolve,
the rigour of MIM structure increases. Therefore, the MIMs
need to be stored and made available at runtime.

The pervasive management services must provide a uni-
form language to express the various management infor-
mation aspects involved. The management language must
be technology independent because contracts are expressed
across heterogeneous technology domains. The language
expressions need technology dependent mappings main-
tained by each domain.

The federation contracts should be able to express

� large scale PIMs i.e. business architecture descrip-
tions, in terms of roles, interactions, and policies;

� dynamic PIM structures, parameterisable by poli-
cies for alternative behaviour patterns and containing
epochs;

� assignment rules for selecting components into the
business architecture roles; and

� separate federation contracts at platform and at appli-
cation level.

The service offers should be able to express

� component properties in platform-independent terms,
i.e. the abstract interfaces and a behaviour model with
policies; and

� components’ platform requirements;

The binding contracts should be able to express

� binding type that indicates the assumed application in-
terfaces of each peer;

� channel structure in terms of transport protocol and ad-
ditional services required.

Finally, platform descriptors should express platform
properties, e.g. transport protocols supported, and trans-
parency support.

4 Management approach in Pilarcos

In the following, we consider the inter-organisational ap-
plication lifecycle and management operations supporting it
illustrated by the work performed in the Pilarcos project.

The lifecycle elements are

� definition of the application structure;

� deployment of the application, i.e., population of the
application structure and subsequent instantiation of
the involved components and bindings;

� partial repopulation;

� epoch change; and

� termination of the application.

4.1 Business architecture description

The essence of an application architecture is the
technology-independent business logic description. The de-
scription must cover the logical processes involved, flow of
abstract information through the multi-organisational sys-
tem, and business responsibilities of each participant. Per-
forming components are then selected to take care of the
responsibilities set, to obey the set operational policies, and
to implement protocols for information exchange modeled.

In the Pilarcos project, the application structure defini-
tion is called a business architecture description [17, 31].
The description expresses how the service is provided as a
cooperation of some performing components. The coopera-
tion is specified in terms of roles, i.e. placeholders for com-
ponents, and rules for selecting performers for those roles.

The ODP enterprise language [13], that is used as a basis
for the ad-hoc business architecture notation used in the Pi-
larcos project, introduces concepts for defining cobehaviour
of members in a community. A community is a configura-
tion of enterprise objects with a contract on their collective
behaviour. The community specification includes

� a set of roles; the role specification gives requirements
and restrictions for the behaviour of an object;

� rules for assigning enterprise objects to roles; the pol-
icy rules can address individual objects or relation-
ships between objects, and can make restrictions on
behavioural and non-behavioural properties of the po-
tential objects;

� policies that apply to roles; policy values act as selec-
tors on alternative behaviours for the objects – and thus
also for the community;

� description of behaviour that changes the structure or
the members of the community during its lifetime.

Each role in the community specification denotes a pos-
sible behaviour. The behaviour descriptions are refined with
policy statements indicating which parts of the behaviour
are prohibited, permitted or obliged to take place and under
what conditions.

A role can be populated by an object that represents an-
other community. In this way, larger systems can be com-
posed of subservices. Functional composition is better sup-
ported by inclusion of multiple community specifications
into a system specification and definition of the relation-
ships between communities.

A community specification may be divided into several
epochs, each presenting a different set of services supported
by the community. For instance, a service might have a con-
figuration phase and an operational phase; during the con-
figuration phase only a management interface is available,
during the operational phase also the actual service inter-
faces.

An example application is described in Figure 1. The
example captures roles, bindings between roles for inter-
action relationships between the roles, and some policies.
Semantically, the example application is a tourist service
that composes subservices such as hotel reservations from
other organizations. For the federation, hotel services are
searched and accepted as potential performers in the sub-
service role if the payment policy appears to be an accepted
credit card.

So far, we have focused on the semantics and require-
ments of the architecture descriptions, pushing forward the
systematic description notation design.

An architecture definition language typically models the
basic elements of

� components for computation and information storage,

� connectors for interaction patterns and rules, and

� configurations for expressing topologies of compo-
nents and connectors [19].

We have chosen components to be large and highly
abstracted, modeling business services or even complete
IT systems. The component descriptions in this case are
not only platform-technology independent, but may capture
only criteria for the selection of a component. The selection
criteria capture the offered and used interfaces of the com-
ponent, the behaviour patterns the component is technically
capable of participating, and the policies that restricting the
actual behaviour.

For connectors we have two separate requirements. First,
for the application programmers and business architecture
designers the connectors are hidden and just the connec-
tivity within the configuration is of interest. Second, the
underlying middleware managing the application brings in
connectors that are developed as first-class components. We
also expect to have multiparty connections.

For configurations we required notations for dynamic
changes.

We considered a group of existing architecture languages
(for example, Darwin [18], ACME [8] , Wright [1] and
LEDA [7]) and UML as alternatives for the language nota-
tion. We found LEDA and Wright interesting because they
both provide behaviour concepts, LEDA provides also dy-
namic configurations. However, none of these fulfilled all
our needs, as selection criteria have not been within the in-
terests of architecture language developers.

policy framework TouristInfoPolicies {
DoubleInterval Price;
string Area;

}
policy framework PaymentPolicies {

StringSet of
{ "VISA", "AMEX", "Mastercard" }

PaymentMethod;
}

service type TouristInfoService {
interface type

TouristInfoInterface touristInfoI;
interface type BillingInterface billingI;
policy framework

TouristInfoPolicies touristInfoP:
attached to touristInfoI;

policy framework PaymentPolicies paymentP:
attached to billingI;

}
service type PaymentService {

interface type BillingInterface billingI;
interface type PaymentInterface paymentI;
policy framework PaymentPolicies paymentP:

attached to billingI, paymentI;
}
service type TouristInfoClient {

interface type
TouristInfoInterface touristInfoI;

interface type PaymentInterface paymentI;
policy framework

TouristInfoPolicies touristInfoP:
attached to touristInfoI;

policy framework PaymentPolicies paymentP:
attached to paymentI;

}

architecture TouristInfoArchitecture {
role client {

service type TouristInfoClient;
< behaviour description i.e.
restrictios for operation sequencing
in terms of prohibitions,
permissions and obligations >

}
role server {

service type TouristInfoService;
touristInfoP.Price = [0, infinity];

}
role paymentMediator {

service type PaymentService;
}
binding touristService amongst

(client.touristInfoI, server.touristInfoI) {
Policies related to this binding

}
binding payment amongst

(client.paymentI,
paymentMediator.paymentI) {

}
binding billing amongst

(server.billingI,
paymentMediator.billingI) {

}
}

Figure 1. An example business architec-
ture [26].

A further language development direction would most
probably propagate the identified needs to UML; this pro-
cess is already in progress by OMG as a result of MDA
needs to change focus from implementation design lan-
guage to modeling.

In the Pilarcos project, the current prototype software
uses computational architecture descriptions as the feder-
ation contract baseline. However, the abstraction level
might be higher, and allow computation-independent con-
tract structure to be used. In that case, more relationship
information would be needed to map business services first
into local computational solutions at each domain.

Because the business architecture descriptions form a se-
mantical basis for the federation contract, the descriptions
need to be stored and available for all participants. It is
promising that MDA has brought up the need for explicit
models between application components for improving the
markets of domain services [23].

4.2 Service offers and component management in-
formation

Components are implemented and developed indepen-
dently from the overall application and from other compo-
nents. A component implementation follows a PSM and
can be done with the help of advanced software engineer-
ing tools introduced by the MDA.

The services provided by these components form a com-
ponent market that is supported by service trading inte-
grated into the middleware. However, the component im-
plementations must be made instantiable first. For this
purpose, the implementations are registered to a comput-
ing system via an implementation repository that main-
tains packages, automatic installation scripts, etc. From
this repository, a uniform service deployer process is able
to pick up the necessary implementations and locate the in-
stances according to service type and platform property re-
quirements. The service deployer is local to the administra-
tive domain in question. Once the component implementa-
tion is made usable at a platform, it can be made available
on the service market.

Because the performing components are created and
managed separately, independent component production
teams can create service components through structured
market, as the business architectures in common use give
guidance on the market request. The more challenging task
of declaring new business architectures can be left for a
smaller group of specialized designers. Because the con-
trolling metainformation about the cooperation between ap-
plication components is separated out from the applica-
tion implementation, the application components become
"dumb", highly reusable, and automatically personalisable
for different user needs.

service offer for TouristInfoService {
interfaces {
touristInfoI = {
"IDL:/repository/interfaces/idl/touristinfo:3.0",
< references to contact point>, ...};

paymentI = {
"IDL:/repository/interfaces/idl/payment:3.0",
< references to contact point>, ...};

billingI = {
"IDL:/repository/interfaces/idl/billing:3.0",
< references to contact point>, ...};

}
policies {

paymentP.paymentMethod =
any of { "Visa", "AMEX" };

touristInfoP.price = 5;
touristInfoP.paymentPolicy = {"prepayment"];
touristInfoP.offeredServices =

{ "HotelInfo", "TravelInfo"};
touristInfoP.supportedTerminals =

{"PC-SVGA", "PDA"};
}
requires < platform requirements >
requires < binding type >

< channel type >
}

Figure 2. An example service offer [26].

As a benefit, the business architecture description fulfills
the need for supporting reuse and component composition,
and even supports introduction of new services and com-
ponent versions by allowing several versions to live simul-
taneously. Also dynamic application configurations can be
easily supported.

The provided components are made available by export-
ing their service offers to the trading service. A service offer
lists the service types supported by the component, policy
values that can be applied, and technology requirements of
the component, especially in respect to communication. In
the MDA terms, the service offers include a partial PSM de-
scription as it only reveals externally visible features of the
service, such as contact point for the service (or its transpar-
ent deployer). An example service offer is given in Figure 2.

The contents of the service offers slightly varies in a
range of industrial products and research projects, depend-
ing on the underlying platform on which the traded elements
run and on the ontology used to describe their properties.
Here, probably a set of ontologies is needed to capture prop-
erties typical for a business domain and to capture proper-
ties of communication subsystems.

For the Pilarcos service offers, the speciality is in com-
munication support requirements formed by the needs of
federated binding process.

4.3 Application population and repopulation

To run an application, the performing components need
to be selected and the result captured into the federation

contract. The contract carries references to all required in-
formation for the application components’ instantiation and
binding. The process of selecting cooperable components
for each role is called a population process. In the MDA
terms, the population process maps a PIM to a set of coop-
erable PSM elements.

The selection of components is based on service offers
and is run by an enhanced trading service. The population
process first retrieves potential offers for each role based on
the service types and other static properties. Then, alter-
native population combinations are tested in sequence for
viability. The service offers include for example binding-
related information that is not part of the architecture de-
scription, and therefore, the first offer retrieval cycle may
bring in offers that are not interoperable with others. Not
all combinations are tested, the process runs either until it
reaches a time limit or finds an ample amount of viable pop-
ulations.

The population process results in a federation contract. It
contains a business architecture reference and references to
the selected component description for each role. The com-
ponents that are selected are known to be interoperable, al-
though they may need some proxy or translator elements to
mediate communication. The components are also known
to be configurable by those shared policies, the values of
which are determined during the population process.

Repopulation allows replacement of some components
of the application either for fault-tolerance or for compo-
nent upgrades. The replacement components are searched
again according to the selection criteria expressed in the
business architecture description.

In principle, the business architecture can be populated
at different times: design, installation, instantiation, or even
runtime. At design time, the designer might use repositories
of components and reuse appropriate ones. The application
would then be instantiated by calling identified components
at each organisational computing system.

For runtime population, advanced middleware services
have a fundamental role. The population process requires
an extended trader-like facility for selecting matching com-
ponents across organisational boundaries and for selecting
interoperability solutions to be used. It also calls for com-
ponent factories that have a platform-independent interface
and language for requesting components to be created, but
include a platform-sensitive selection mechanism and cre-
ate platform-specific components.

This late deployment approach supports management
of heterogeneity between technology domains and protects
from the effects of asynchrony of service development cy-
cle at different administrative domains. It also supports the
evolving market of component implementations.

Consequently, it is possible that there is no full-featured
static platform-dependent model of an application, except

of a contract formed at runtime, when the players become
chosen and connected. This is in contrast to the expectations
on traditional software engineering methods.

4.4 Contract-based instantiation

Logically, the application is presented by the federa-
tion contract produced by the population process main-
tained by a contract manager. The federation contract
contains a business architecture description and a ser-
vice offer for each role. The contract is expressed in
platform-independent terms and can thus be changed using
a platform-independent management language. The con-
tract manager provides an interface with operations for ini-
tiating repopulation, epoch change, termination, and rene-
gotiation of policies.

The component instantiation processes involved in the
application startup take place in a distributed fashion be-
cause there is no shared authority allowed to make direct
management operations at the sovereign domains. The con-
tract manager can only request certain cooperative manage-
ment operations to be performed.

The components referred to in the federation contract are
instantiated by a uniform, but platform-aware instantiation
process. In this process, the technology-independent con-
tract concepts are mapped onto technology solutions.

To organize the mappings, the ODP concepts of type and
template can be used. A type is a predicate on some entity,
characterizing some features of the entity. For example, a
PIM can be considered a type. A template is more specific,
carrying enough information for instantiation on a specific
platform. A very detailed PSM might be a template, given
appropriate tools for direct code generation, installation fa-
cilities and factory services.

For matching and instantiation purposes, the Pilarcos
project uses an enhanced ODP type repository. The type
repository supports operations for registering types (and
templates as a subtype) and their relationships. We group
together, under a PIM of an element, different PSM ver-
sions. The PIM serves as a type description, and the PSM
elements as implementation selectors. The relationships
that collect together the group carry references to necessary
transformator components, when appropriate.

The federation contract covers also shared policy val-
ues for components to follow. The components should be
parametrisable or (re)configurable as suggested in CCM
(CORBA Component Model) draft. A technical example of
already existing policies are activation and threading poli-
cies. However, as the domain application PIMs are devel-
oped, also policy frameworks related to them become better
understood. This would allow business policies to be incor-
porated into components.

4.5 Federated binding

The federated binding process [16] is initiated asyn-
chronously after the federation between application com-
ponents has been established. All binding contracts have
their initial agreements specified during the federation es-
tablishment, as the federation establishment process selects
the components for the application in such a way that the re-
quired facilities for the bindings are available. The service
offers provide information about the application services,
but also express the requirements for the binding object ar-
chitecture to be selected.

The logical binding object is split into domain specific
binding objects. At each domain, a channel controller is
created to represent the binding and manage the binding
contract. The channel controller is responsible of instan-
tiating the channel implementation through local factories.

For channel management, the channel controller will ei-
ther be able to add or delete channel elements (stubs, trans-
lators, protocol objects, etc.) [6], or use a deployment script
to instantiate the whole group as a unit [2]. Whichever de-
sign is used, the overall PSM will be selected from a reposi-
tory based on the information carried in the binding contract
(formed starting from the information available at service
offers). The solution here resembles the design time selec-
tion of connector elements in a middleware repository in
Aster [5]. Also a trader-like mechanism has been suggested
to locate suitable binding factories [24].

It should be noted that each party only assumes that the
peers have similar structure for the channel, although in re-
ality, there might be a rigorous configuration of interceptors,
bridges and additional application components at place.

The federated binding process is consistent with the
ODP IRB standard [12] which also explains how interface
references can be expanded to carry the above described ad-
ditional binding contract information. The Pilarcos binding
mechanism differs from the recursive binding of SUMO [4]
by choosing the whole protocol stack simultaneously, thus
keeping the number of negotiation rounds fixed, but using
late and lazy instantiation of the channel.

4.6 Epoch change and termination

An epoch change means the change of provided services
and the change of roles in the application. An epoch change
is triggered by an explicit action in the community or by
an external management action that is directly addressed
to the contract manager of the application. Epoch change
preserves those components that fulfill surviving roles, uses
repopulation to search new components to the new roles,
and removes those components that fulfil terminating roles.
The role constellation for the new epoch has to be included

in the business architecture description, as well as the trig-
gering event.

Termination of the application invalidates the federation
contract and allows termination of services and bindings ac-
cording to their termination policies. It is possible that the
same elements are used for other applications simultane-
ously, so they may need to outlive a single federation.

4.7 Status and future work

The Pilarcos project is in progress, having produced a
first prototype version and working on a second. The first
version focused on the population process and the Pilarcos
enhanced trader facility [31].

The Pilarcos trading system is currently able to popu-
late federations based on architecture descriptions like il-
lustrated in Figure 1. The rigor of the architecture de-
scription language does not yet support epochs or com-
plex community systems, nor does it include behaviour de-
scriptions. The Pilarcos trading system uses the standard
CORBA Trading service to store the service offers. Cur-
rently there is only a single trader involved, forming an ex-
pected bottleneck to the system. Further studies try out the
effect of federated traders.

Interoperability tests between peer component interfaces
are performed by the type repository. The first version was
plainly the Trader type management interface. The second
version we are currently working on will trust heavily on
predefined relationships between interface types and bang-
ing types respectively. The processes for some heuristi-
cal rules for creating these relationships automatically have
been discussed both within this and an earlier project [16]
and within the ODP type repository standard group.

The service deployer tasks were initially mapped to func-
tionalities for installing CORBA component packages, and
instantiating and locating services. In the first Pilarcos pro-
totype, all bindings were created across CORBA ORBs, and
no heterogeneity of application interfaces were presented.

The second version focuses on the federated binding
mechanism and heterogeneity of the used technologies. In
addition to CORBA platforms, application components and
some infrastructure services will be developed for EJB plat-
form.

5 Conclusion

This paper summarizes the suggestions we provide for
the OMG CORBA management RFI requesting informa-
tion on the management requirements on CORBA systems,
CORBA-based applications and interoperability needs. The
focus in this paper is on the new standardization issues we
believe need to be opened.

We suggest a new category of services for CORBA mid-
dleware, the cooperative management services to take care
of the needs of multidomain applications.

The model suggested here is applicable not only on
CORBA platforms, but on any other component-based or
object-based platform too. Requirements for interoperabil-
ity support are minimal: shared means to express services
and locations. There is no embedded requirements for ex-
ample to unify component models, because such decisions
are left internal for each technology domain.

As this paper is directed for standardization efforts, we
need to relate the model to those present in OMG target
environments, i.e. JINI, Web Services and UDDI (Universal
Description, Discovery and Integration); .NET being one of
the UDDI users.

In the JINI [28] distributed computing environment, ser-
vices can announce their presence through lookup services
and implementations can be transferred to the client system
automatically. The implementations are portable because a
shared platform, Java Virtual Machine, is required. The ma-
jor concern is in security – code that cannot be verified and
managed with local administrative routines must be trusted
as is. The sandbox solutions for disallowing certain actions
from foreign code solve the problem only partially.

The Web Services goal is faster integration of appli-
cations into B2B solutions [30]. Web Services are self-
contained business applications that use Internet standards
at their interfaces. The self-containment idea is simi-
lar to the sovereign service components presented above,
although the acceptable communication protocols are re-
stricted to Internet protocols. The UDDI registry acts as
a yellow pages service for Internet accessible services, into
which service providers themselves can export their infor-
mation. The UDDI registry is analogous to the use of object
trading service described in Section 3. Also Web Services
and UDDI development line is still looking forward to a
universal service interoperability protocol [29].

The major feature that makes the Pilarcos approach dif-
ferent from the others is that instead of moving stubs or ap-
plication code to a target computer possibly in a remote do-
main, the Pilarcos architecture uses platform-independent
contracts for expressing what kind of elements should be
present and where, and lets the local management services
map that need to local technology solutions. Although not
discussed in this paper, this restriction is significant element
also in support of privacy and security of computing sys-
tems.

All of these systems promote evolution of open service
markets for business services and computational compo-
nents; automatic access to these markets should become an
integral part of the global computing infrastructure. Achiev-
ing this requires some major development in terms of joint
understanding on the reasonable structure of service mar-

kets and development of cooperative management services
to support these markets. Furthermore, the components at
markets should be guided towards commonly used roles
within business architectures.

6 Acknowledgements

This article is based on work performed in the Pilarcos
project at the Department of Computer Science at the Uni-
versity of Helsinki. The Pilarcos project is funded by the
National Technology Agency TEKES in Finland, together
with Nokia, SysOpen and Tellabs.

References

[1] R. J. Allen. A Formal Approach to Software Architecture.
Ph.D. thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, May 1997.

[2] D. Balek. Connectors in Software Architectures. PhD The-
sis, Charles University, Czech Republic, 2002.

[3] A. Berry and K. Raymond. The
�����

Architecture Model. In
Open Distributed Processing; Experiences with distributed
environments, Proc. of the 3rd IFIP TC6/WG 6.1 Interna-
tional Conference on Open Distributed Processing, pages
55–67, Brisbane, Australia, 1995. Chapman and Hall.

[4] G. Blair and J.-B. Stefani. Open Distributed Processing and
Multimedia. Addison-Wesley Publishing Company, 1997.

[5] G. S. Blair, L. Blair, V. Issarny, P. Tuma, and A. Zarra. The
Role of Software Architecture in Constraining Adaptation
in Component-based Middleware Platforms. In Middleware
2000, IFIP/ACM International Conference on Distributed
Systems Platforms and Open Distributed Processing, New
York, USA, Apr. 2000.

[6] G. S. Blair, G. Coulson, N. Davies, P. Robin, and T. Fritz-
patric. Adaptive Middleware for Mobile Multimedia Appli-
cations. In Proceedings of the 8th International Workshop
on Network and Operating System Support for Digital Au-
dio and Video (NOSSDAV), 1997.

[7] C. Canal, E. Pimentel, and J. M. Troya. Specification and
Refinement of Dynamic Software Architectures. In First
Working IFIP Conference on Software Architecture. Kluwer
Academic Publishers, 1999.

[8] D. Garlan, R. Monroe, and D. Wile. ACME: An Architec-
ture Description Interchange Language. In Proceedings of
CASCON’97, pages 169– 183, Toronto, Ontario, Nov. 1997.

[9] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. ODP Type Repository Function. IS14746.

[10] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 2: Foundations, 1996. IS10746-2.

[11] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. Reference Model of Open Distributed Process-
ing. Part 3: Architecture, 1996. IS10746-3.

[12] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing – ODP Interface References and Binding, Jan.
1998. IS14753.

[13] ISO/IEC JTC1. Information Technology – Open Systems
Interconnection, Data Management and Open Distributed
Processing. ODP Enterprise Language, 2002. DIS13235.

[14] P. Kähkipuro, L. Marttinen, and L. Kutvonen. Reaching In-
teroperability through ODP type framework. In TINA’96
Conference: The Convergence of Telecommunications and
Distributed Computing Technologies, pages 283 – 284. VDE
Verlag, Aug. 1996. Extended abstract.

[15] L. Kutvonen. Management of Application Federations. In
H. Konig, K. Geihs, and T. Preuss, editors, International
IFIP Working Conference on Distributed Applications and
Interoperable Systems (DAIS’97), pages 33 – 46, Cottbus,
Germany, Sept. 1997. Chapmann & Hall.

[16] L. Kutvonen. Trading services in open distributed environ-
ments. PhD thesis, Department of Computer Science, Uni-
versity of Helsinki, 1998.

[17] L. Kutvonen, J. Haataja, E. Silfver, and M. Vähäaho. Pilar-
cos architecture. Technical report, Department of Computer
Science, University of Helsinki, Mar. 2001. C-2001-10.

[18] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
Distributed Software Architectures. In Fifth European Soft-
ware Engineering Conference ESEC’95, Barcelona, Sept.
1995.

[19] N. Medvidovic and R. N. Taylor. A framework for classi-
fying and comparing architecture description languages. In
M. Jazayeri and H. Schauer, editors, ESEC/FSE ’97, volume
1301 of Lecture Notes in Computer Science, pages 60–76.
Springer / ACM Press, 1997.

[20] Object Management Group. OMG Trading Object Service
Specification, June 2000. OMG Document formal/2000-06-
27.

[21] Object Management Group. Model Driven Architecture. Op-
portunities and Challenges, Feb. 2001. Draft version 0.4.
Document number ab/2001-02-03.

[22] Object Management Group. Request for Information –
CORBA Management Services, 2001. OMG document
orbos/2002-09-08.

[23] Object Management Group, Architecture Board ORMSC.
Model Driven Architecture, July 2001. Document
ormsc/2001-07-01.

[24] H. O. Rafaelsen and F. Eliassen. Trading and negotiat-
ing stream bindings. In Proceedings of IFIP/ACM Inter-
national Conference of Distributed Systems Platforms and
Open Distributed Processing (Middleware2000), New York,
Apr. 2000. Springer.

[25] J. Siegel. Developing in OMG’s Model-Driven Architecture.
Object Management Group, Nov. 2001. White paper, revi-
sion 2.6.

[26] E. Silfver, J.-P. Haataja, and M. Vähäaho. Pilarcos business
case II – Enhanced Tourist Info Service. Technical report,
Department of Computer Science, University of Helsinki,
Mar. 2002. Internal Pilarcos project report.

[27] R. Soley. Model Driven Architecture. Object Management
Group, Nov. 2000. White paper, draft 3.2.

[28] SUN Microsystems, Inc. Jini Architectural Overview. Tech-
nical White Paper.

[29] UDDI. UDDI Technical White Paper, Sept. 2000.
http://www.uddi.org/pubs/UDDI_Technical_White_Paper.pdf.

[30] UDDI. UDDI Executive White Paper, Nov. 2001.
http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf.

[31] M. Vähäaho, E. Silfver, J. Haataja, L. Kutvonen, and
T. Alanko. Pilarcos demonstration prototype – design and
performance. Technical report, Department of Computer
Science, University of Helsinki, Dec. 2001. C-2001-64.

