Conepxanune 5 6 FDPW’2001-2002. Vol. 4

Copepxkanune Contents
Contents.....coiiiiiiiiiiiiiiiiiiiiiiii it iieiieieiiaienas 6 Juha Taina, Jukka Paakki, Raine Kauppinen
RITA—a Framework Integration and Testing Application 7
IO. Taiina, FO. IMaaxxu, P. Kaynnunen 1 Introduction.............. @ ... 8
RITA — mHTerpanus TeXHOJOTHIeCKOil CTPYKTypPbl B Tec- 2 Related Work. 9
THpPOBaHME NPOTPAMMHOTO IIPUJIOKEHUST 7 3 Framework Issues 9
1. BBEOEHHC. . . . o ot 8 4 RITA ... 11
2. VI3BECTHBIC PEBYIBTATBI « « « .« « o o e eee e oo 9 5 Conclusion and Future Work 14
3. Bompochl TeXHOIOIMYECKON CTPYKTYPBL .« . o v v v v vv e 9
4. RITA .. 11
5. 3akJjIoYeHUe U HANPABJICHUS JaJibHEIIeH paboThl 14

FDPW’2001-2002. Vol. 4, pp. 7-15

RITA—a Framework Integration

and Testing Application

Juha Taina, Professor Jukka Paakki, Raine Kauppinen

Department of Computer Science, University of Helsinki

P.O. Box 26 (Teollisuuskatu 23)
FIN-00014 University of Helsinki, Finland

E-mail: {Juha.Taina, Jukka.Paakki,
Raine.Kauppinen}@cs.Helsinki.FI

Abstract

In this paper we give the first introduction of our product line testing
application RITA. RITA is designed for framework and framelet based
application testing. It includes services for interface class identification,
code profiling, coverage criteria analysis, driver and stub generation,
test management, and statistics.

Contents
1 Introductionciiiieneerennnnennnns 8
2 Related Workt iinrnnenns 9
3 Framework Issuescuii i iinrnnenns 9
O 1 L I N 11
4.1 Template and Hook Object Identifier 11
4.2 Profiler e 11
4.3 Coverage Analyzer 12
4.4 Driver and Stub Generator 13
4.5 Test Management Environment. 13
4.6 Statistics e 13
5 Conclusion and Future Work 14
© Juha Taina, Jukka Paakki, Raine Kauppinen, 2002

8 Juha Taina, Jukka Paakki, Raine Kauppinen

1 Introduction

A product line approach in software development is based on the fact that
usually a software development company creates several closely related
software products at the same time. When those products are treated as
a family, equal approaches and common code may be shared between the
products.

From a testing point of view, testing a product line member may be
seen as a problem of testing an incomplete program. While function-
ality common to all product line members is present and well tested,
application-specific functionality may be missing or only partially tested.
This special nature should be taken into account in product line testing.

We have taken a framework-based approach in product line testing. A
framework is considered a common basis for all product line members. It
is well defined and tested. Next to this, smaller framework-type entities
called framelets are used to define functionality that is common to a subset
of the product line family. Also framelets are well defined and tested, but
their interfaces to other elements of code may need to be tested. Finally,
each product line family member has application-specific code that needs
full testing. Also regression testing must be taken into account in all
phases of testing framework and framelet-based applications.

The special nature of framework and framelet-based software helps to
identify potential test issues. The characteristics of such software are as
follows:

Test state. Most of the code is already fully or partially tested in frame-
works and framelets.

Interfaces. All application-specific code is defined under well-defined in-
terfaces. Thus, only specific pars of frameworks and framelets need
extra regression testing.

Automated test alternatives. Since most of the application code is gener-
ated automatically, the code structure may be used to identify test
cases.

Using the framework-based testing approach, we are developing our
product line testing tool RITA (fRamework Integration and Testing Ap-
plication). In this paper we present the core functionality of RITA.

RITA—a Framework Integration and Testing Application 9

The rest of the paper is organized as follows. In Section 2 we give
a brief summary of related work. Section 3 gives the necessary back-
ground of framework-based applications. In Section 4 we introduce our
framework-testing environment RITA. Finally, Section 5 concludes the

paper.

2 Related Work

The product line approach for software development is currently under
extensive research. There have been a few large scale projects that have
studied the product line approach and product families, for example the
ARES project [7]. Also, SEI has developed a framework for software prod-
uct line practice [12]. In addition, some case studies involving software
product lines have been made [1,4].

However, surprisingly little is written about testing in the product line
approach. Naturally, the traditional object-oriented methods for testing
large applications or frameworks and reusing software components can be
used [2,3,5,6,9,13], but there is also growing demand for a well-defined
product line testing process and methodology including tool support. One
approach to product line testing is presented in SEI’s framework for soft-
ware product line practice [12]. Also McGregor and Sykes have defined
a testing process and introduced methodology and tools that can be used
in the product line approach [10].

3 Framework Issues

A framework can be seen as a meta-model for an object-oriented family
of software products. It offers a basic structure that is similar or almost
similar to all members of the software product family. As such it fits
extremely well product lines which are clearly families of similar software
products.

When we consider a member of a product line family, the framework
defines the central concepts of the product architecture. The framework
is used to create a skeleton product that can later be expanded. Thus,
not all of the architecture is described in the framework. The unspecified
parts are open for application extensions.

The framework-based skeleton product contains a set of template ob-
jects. A template object, as described in [11], is an interface object from
the static framework-created code to dynamic application extension code.

10 Juha Taina, Jukka Paakki, Raine Kauppinen

Each template object has a relationship to zero or more hook objects.
Each hook object offers an entry point that may be extended with applica-
tion specific code. Template objects offer a static interface to hook objects,
and hook objects offer skeleton functionality that is later expanded by ap-
plication specific code. The hook objects are often called hot spots since
they offer dynamic interfaces for application code. Similarly, template
objects are called cold spots since they are static in nature.

The template and hook objects form a relationship, as presented
in [11]. The relationships are as follows.

Unification relationship: The template and hook object are the same ob-
ject. Thus, the template object is a hot spot itself. This is the most
common case in framework generators. They generate a set of tasks
that must be fulfilled. A finished task is an object or a method,
both of which may be considered a combination of a template and
a hook object.

Connection relationship: A template object has a dynamic relationship
to one or more hook objects. This is a more dynamic alternative
than the previous ones since it allows different types of hook objects
to be connected to a template object. Also the connection may be
dynamically defined at software execution time while in a unification
relationship the connection is statically defined at compile time.

Recursive unification relationship: The template and hook objects are
the same object and have a relationship to another similarly con-
nected object. This relationship allows dynamic lists of hot spots
from a template object.

Recursive connection relationship: The template object has a relation-
ship to zero or more hook objects, and the template object is in a
subclass of the hook object. This relationship allows dynamic trees
of hot spots from a template object.

The relationships are important since they define how and where the
framework functionality can be expanded. From a testing point of view,
the template and hook objects define where we should start testing. The
framework code is automatically generated and expected to work. The
framework software vendor has already tested its output. The dynamic
product line family member specific code is prone to errors and needs
testing.

RITA—a Framework Integration and Testing Application 11

The application specific code may be hand-designed and written, or
it may be automatically generated with framelets. A framelet is a small
framework, which does not have the main control loop. Framelets have
both interfaces to connect to hot spots, and template and hook objects for
other application specific extensions. As such they can be used in product
line families to generate functionality that is needed only in a subset of
the family members, or expand the functionality offered by the framework
itself.

The product line approach can be expanded to product line member
testing. First, we have the framework which is considered stable and
well-defined. It has been tested indirectly when the framework software
vendor has tested its product. The product line framelets are not as
stable since they include an interface that needs testing. Yet the framelet
itself should be relatively stable. Finally, all hand-designed and written
application-specific code needs full testing.

4 RITA

The RITA integration and testing environment consists of testing man-
agement elements that offer services for white-box testing in product line
environments. The elements are as follows: template and hook object
identifier, profiler, coverage analyzer, driver and stub generator, test en-
vironment, and statistics generator. We will cover the elements in turn
in this section.

4.1 Template and Hook Object Identifier

A new application is first analyzed to identify template and hook objects.
This information is used in testing and coverage analysis. The identifica-
tion process is semi-automatic. The template and hook object identifier
first recognizes potential template and hook object candidates, and the
end user has to choose the actual objects from the candidate list.

The template and hook object information is important since it allows
RITA to recognize the interface objects between frameworks, framelets
and application code. Alternatively this information may be hand-written
or extracted from the framework and framelet generators.

4.2 Profiler

When a newly added application is being tested, it is first run through
a profiler. The profiler preprocesses application code so that RITA can

12 Juha Taina, Jukka Paakki, Raine Kauppinen

gather data from the actual code execution. This element allows later
RITA elements to analyze the executed code, and also to create graphical
presentations of the code.

In the first stage the RITA profiler accepts Java code as input. It
modifies code without modifying code functionality. A new RITA class is
generated. The class gathers information about executed paths and stores
it once the program execution is over.

The RITA profiler will be defined so that it can later be expanded
to other programming languages than Java. It accepts all standard Java
structures. Only exceptions are forbidden in the first version since ex-
ception processing can easily violate the normal execution flow of the
program. In the later versions of RITA exception processing will also be
under research.

4.3 Coverage Analyzer

The Coverage analyzer is one of the main elements of RITA. It accepts
a profiler generated file as input and generates white-box based coverage
information from the material. In the first prototype we support code and
branch coverage.

A very interesting framework-based coverage criteria which we call hot
spot coverage defines how much of the expanded hot spot functionality
has been covered in the tests. Only those hot spots that have framelet or
hand-written expansion code are included in the coverage criteria.

The exact theory of hot spot coverage criteria is beyond the scope of
this paper. Here is only an informal presentation of the idea.

The hot spot coverage is based on template and hook objects, and
paths from template object entry points to their exit points. The set of
paths defined for the coverage may be any subset of possible paths. A
set of independent paths, as defined by McCabe in [8], is one of the best
alternatives. An independent path is usually recursively defined as the
shortest path through a flow graph that cannot be linearly combined from
other independent paths. Basically it says that the first independent path
is the shortest path through the flowgraph, and the following paths are
reached by adding one uncovered node or edge to the shortest path and
calling it the next independent path.

Let us have a template object T" that has a relationship to hook objects
H,,...,H,. We define the hot spot coverage over a set of paths P to be

RITA—a Framework Integration and Testing Application 13

the path coverage over P starting from the interface of T' and traversing
via connected hooks of Hy,...,H,. A hook is connected if it has been
expanded by a framelet or a piece of hand-written code.

4.4 Driver and Stub Generator

From a testing point of view, a designed product line family member is an
incomplete program. The framework and perhaps framelets are present
while some or all of the application-specific code is unwritten. Due to this
RITA offers services for automatic driver and stub generation.

In the first prototype of RITA, drivers are based on template and hook
objects. RITA uses the identified templates and hooks to generate drivers.
In the prototype version we use only unification and connection relation-
ships. The recursive relationships are much more difficult to analyze both
for the driver and test case generation.

Since RITA is an integration tool, it allows framelets and application-
specific code to be tested separately from the framework. In these cases
identified template objects are separated and drivers are connected to
them. Thus, testing does not necessarily start from the framework at
all. Next to this, regression test cases are also necessary in order to verify
that a modified framelet or hand-written code does not affect earlier tested
functionality.

Stub generation is needed since the tested product line family member
is not necessarily a complete program. However, writing complete stubs
would require semantic knowledge of the methods where the stubs are
plugged. In the prototype we do not gather such semantic information.
Instead we generate only minimal stubs that allow the tested program to
be executed and partially tested.

4.5 Test Management Environment

As any testing tool, RITA offers a complete test management environ-
ment. Executed tests are stored into a database. Known results may
be compared to test results. Regression testing is supported. From the
tester’s point of view this is probably the most important service of RITA.
However, from our point of view it is not that interesting.

4.6 Statistics

Finally, RITA will generate various reports and graphical presentations
of the test process and tested software. The first prototype will include

14 Juha Taina, Jukka Paakki, Raine Kauppinen

at least various coverage percentage based on executed tests, graphical
coverage information of chosen classes, and information about template
and hook objects, and their test states.

5 Conclusion and Future Work

In this paper we have presented the prototype functionality of RITA,
a framework integration and testing application. We strongly believe
that RITA functionality is useful and even necessary for framework-based
application testing. This is especially true in product line environments
where lots of closely related programs are being developed and tested.
We are currently implementing the first prototype of RITA. The pro-
totype will include the core functionality of RITA including a user in-
terface, a profiler, a path identifier for hot spot coverage, some coverage
analysis, and test execution. In the future versions we will implement
more of the RITA functionality and also expand the core when necessary.

Bibliography

[1] M. Ardis, N. Daley, D. Hoffman, H. Siy, and D. Weiss. Software
product lines: a case study. Software—Practice and Experience, 2000.
Vol. 30, no. 7, pp. 825-847.

[2] T. R. Arnold and W. A. Fuson. Testing “in a perfect world”. Com-
munications of the ACM, 1994. Vol. 37, no. 9, pp. 78-86.

[3] R. V. Binder. Design for testability in object-oriented systems. Com-
munications of the ACM, 1994. Vol. 37, no. 9, pp. 87-101.

[4] J. Bosch. Product-line architectures in industry: A case study. Pro-
ceedings of the 21st International Conference on Software Engineer-
ing (ICSE’99). ACM, 1999. pp. 544-554.

[5] N. Daley, D. Hoffman, and P. Strooper. A framework for table driven
testing of Java classes. Software—Practice and Experience, 2002.
Vol. 32, no. 6, pp. 465-493.

[6] M. Fayad, D. Schmidt, and R. Johnson. Building Application Frame-
works. Wiley and Sons, 1999.

RITA—a Framework Integration and Testing Application 15

[7] M. Jazayeri, A. Ran, and F. van der Linden. Software Architec-
ture for Product Families: Principles and Practice. Addison-Wesley,
2000.

[8] T. McCabe. A complezity measure. IEEE Transactions on Software
Engineering, 1976. Vol. 2, no. 4, pp. 308-320.

[9] J. D. McGregor and T. D. Korson. Integrated object-oriented test-
ing and development processes. Communications of the ACM, 1994.
Vol. 37, no. 9, pp. 59-77.

[10] J. D. McGregor and D. A. Sykes. A Practical Guide to Testing
Object-Oriented Software. Addison-Wesley, 2001.

[11] W. Pree. Design Patterns for Object-Oriented Software Development.
Addison-Wesley, 1995.

[12] A Framework for Software Product Line Practice— Version 3.0. Soft-
ware Engineering Institute, Northorp, Linda M. (director), Carnegie
Mellon University, Pittsburgh, PA, USA, 2001.
http://www.sei.emu.edu/plp/framework.html [March 16, 2002].

[13] Y. Wang, G. King, M. Fayad, D. Patel, I. Court, G. Staples, and
M. Ross. On built-in test reuse in object-oriented framework design.
ACM Computing Surveys, 2000. Vol. 32, les, pp. 7-12.

