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The width of C is w(C) := k.
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Resolution

Clause: disjunction aj v...va, of literals a; = x or a; = x.

The width of C is w(C) := k.

Formula (in CNF):  conjunction Ci A ... A Cp, of clauses.

Resolution rule
If C,D are clauses with x € C and x € D, then

Res,(C,D) = (C\ x)v(D\x)
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Resolution proofs

Definition
A Resolution derivation R of clause C from formula F

is a dag labelled with clauses s.t.
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> there is exactly one sink labelled C
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Definition
A Resolution derivation R of clause C from formula F
is a dag labelled with clauses s.t.

> there is exactly one sink labelled C

» If v has predecessors u and v/, then
C, = Resy(Cy, Cy)

for some variable x

» if v is a source, then C, € F
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Resolution proofs

Definition
A Resolution derivation R of clause C from formula F
is a dag labelled with clauses s.t.

> there is exactly one sink labelled C

» If v has predecessors u and v/, then
C, = Resy(Cy, Cy)
for some variable x
» if v is a source, then C, € F
If the dag is a tree, we call R tree-like

A Resolution refutation of F is a derivation
of the empty clause O from F.
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DPLL and Tree Resolution

Theorem
If unsatisfiable formula F is refuted by DPLL in s steps,

then F has a tree-like resolution refutation R of size s.
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DPLL and Tree Resolution

Theorem
If unsatisfiable formula F is refuted by DPLL in s steps,

then F has a tree-like resolution refutation R of size s.

The converse also holds.

Wanted: Similar correspondence for
DPLL with clause learning.
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Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.
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Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

> Croot =0

» if v has children v and ¢/, then

C, = Resy(Cy, Cy)  for some variable x
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Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

> Croot =0

» if v has children v and ¢/, then

C, = Resy(Cy, Cy)  for some variable x

» if v is a leaf, then
C,eF

Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas



Resolution Trees with Lemmas

A Resolution tree with lemmas (RTL) for formula F
is an ordered binary tree labelled with clauses s.t.

> Croot =0

» if v has children v and ¢/, then

C, = Resy(Cy, Cy)  for some variable x

» if v is a leaf, then
C,eF o C,=C, forsome u<v

< is the post-order on trees.

(lemma)
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Clause learning and RTL

Theorem (Buss, Hoffmann, JJ 08)
If unsatisfiable formula F is refuted by DPLL+CL in s steps,

then F has an RTL-refutation R of size s - n®1).
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Clause learning and RTL

Theorem (Buss, Hoffmann, JJ 08)
If unsatisfiable formula F is refuted by DPLL+CL in s steps,
then F has an RTL-refutation R of size s - n°(1).

Moreover, the lemmas used in R are among the clauses
learned by the algorithm.

In fact, the paper defines a subsystem WRTI < RTL
for which also the converse holds.

A refutation R in RTL is in RTL(k), if every lemma C
used in R is of width w(C) < k.
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Previous lower bounds

Theorem (BHJ 08)
Every RTL(n/2)-refutation of PHP, is of size 2{n'ogn).
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Theorem (BHJ 08)

Every RTL(n/2)-refutation of PHP, is of size 2{n'ogn).

Theorem (JJ 09)
Every RTL(n/4)-refutation of Ord, is of size 2.

Theorem (Ben-Sasson, JJ 10)

If resolution refutations of F require width w,
then every RTL(k)-refutation of F is of size 2" =2k,

Here we show:

Theorem
For every k, there are formulas F,gk) such that

> F{¥) have RTL(k + 1)-refutations of size ().

Clause learning
proof systems

Jan Johannsen

Resolution Trees
with Lemmas



Previous lower bounds

Theorem (BHJ 08)

Every RTL(n/2)-refutation of PHP, is of size 2{n'ogn).

Theorem (JJ 09)
Every RTL(n/4)-refutation of Ord, is of size 2.

Theorem (Ben-Sasson, JJ 10)

If resolution refutations of F require width w,
then every RTL(k)-refutation of F is of size 2" =2k,

Here we show:

Theorem
For every k, there are formulas F,gk) such that

> F{¥) have RTL(k + 1)-refutations of size ().

> F{K requires RTL(k)-refutations of size 2"/ logn).
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Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G:
> put pebble on any source N\
> put pebble on any vertex Q
where both predecessors
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» remove any pebble
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Graph Pebbling

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G:
> put pebble on any source N\
> put pebble on any vertex Q
where both predecessors
have a pebble
» remove any pebble

until a pebble is put on t.

Pebbling number Peb(G): min. # of pebbles in game on G.
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Graph Pebbling root stams
Jan Johannsen

Pointed DAG: G with in-degree 2 and one sink t.

Pebble game on G:
> put pebble on any source N\
> put pebble on any vertex Q
where both predecessors
have a pebble
» remove any pebble

until a pebble is put on t.

Pebbling formulas

Pebbling number Peb(G): min. # of pebbles in game on G.

Theorem (Celoni, Paul, Tarjan 1977)
There are dags G, of size n with Peb(G,) > Q(n/ log n).
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Pebbling formulas

Clauses Imp(G):
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Pebbling formulas
for every source v

for (u,v),(v,v) € E
for the sink t

Imp?(G): replace every x, in Imp(G) by X1V Xy2

Theorem (Ben-Sasson et al. 2004)

Every tree resolution refutation of Imp?(G)

is of size 28(Peb(G))
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L . Clause learning
XO lelcatlon proof systems
Jan Johannsen

> X(x, k) =x1D...D xk for a variable x.

Pebbling formulas

» X(x,k)=X(x, k)1 for a negated variable x.



XORification

> X(x, k) =x1D...D xk
» X(x, k) = X(x,k)® 1
> X(C, k) = Vaec X(a, k)
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XORification

v

v

X(x, k) =x1&...0 xk
X(x,k)=X(x,k)® 1
X(C7 k) = \/aeCX(37 k)

X(F, k) = ANcer X(C, k)
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XOlelcatlon Clause learning
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> X(x, k) =x1D...D xk for a variable x.
X(x, k) = X(x,k)®1 for a negated variable x. "R

» X(C, k) =V,ec X(a, k) expanded into CNF,
for a clause C.

» X(F, k) = Acer X(C, k) for a CNF formula F.

v

We write Imp®*(G) for X(Imp(G), k).

Theorem
For every G of size n,

Imp®k(G) has RTL(k)-refutations of size O(23kn).
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» Let R be a refutation of
Imp®+1)(G)

» Find first C with w(C) < k

Pebbling formulas

» Subtree R¢ is tree-like
derivation of C

» Pick p with C[p =0

» Rc|p is refutation of
Imp® =+ (G)[p
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Let BV — {0,1}2, with B(x) = (Bo(x), B1(x)).

Pebbling formulas

» X(x, k,f)=x1®...®xxk®P1(x)  for a variable x

with Bo(x) = 0.
» X(x,k,B) =x1 @ B1(x) for a variable x
with fo(x) = 1.
> X(x,k,8)=X(x,k,B)®1 for a neg. variable x.
» X(C,k,8) = V,ec X(a, k, B) expanded into CNF,

for a clause C

X(F,k,B) = Ncer X(C, k, ) for a CNF formula F

v

We write Imprk(G) for X(Imp(G), k, B)
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» Let R be a refutation of
Imp®+1)(G)

» Find first C with w(C) < k

Pebbling formulas

» Subtree R¢ is tree-like
derivation of C

» Pick p with C[p =0

» Rc|p is refutation of
Imp® =+ (G)[p

> ImpPUD(G)[p = Imp(G)
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» Let R be a refutation of
Imp®+1)(G)

» Find first C with w(C) < k

Pebbling formulas

» Subtree R¢ is tree-like
derivation of C

» Pick p with C[p =0

» Rc|p is refutation of
Imp® ) (G)[p

> Imp® (G [p = Imp?(G)
for a 5 with a(8) <1

» lower bound shows
’R‘ > ’RC| > 2Q(Peb(G))
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Generalization of the lower bound by Ben-Sasson et al.:
Pebbling formulas

Theorem
Every tree resolution refutation of Impgy(G )
is of size 28(Peb(G)—a(p))

where a(f) := #{v; Bo(xv) =1}

Theorem
For every k, the formulas Imp®(<+1)(G,)

» have RTL(k + 1)-refutations of size n°1),
> require RTL(k)-refutations of size 24(n/108 )
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