
Trusted Execution Environments on 
Mobile Devices  

ACM CCS 2013 tutorial 
 

Jan-Erik Ekberg, Trustonic 
Kari Kostiainen, ETH Zurich 

N. Asokan, University of Helsinki and Aalto University 



2 

What is a TEE? 

Execution Environment 

Isolated and integrity-
protected 

Processor, memory, 
storage, peripherals 

From the “normal” execution environment 
(Rich Execution Environment) 

Chances are that: 
You have devices with hardware-based TEEs in them! 
But you don’t have (m)any apps using them 

Trusted                                         



3 

Outline 

• A look back (10 min) 
– Why mobile devices have TEEs? 

• Mobile hardware security (30 min) 
– What constitutes a TEE? 

• Application development (30 min) 
– Mobile hardware security APIs + DEMO 

 
Break (10 min) 

 
• Current standardization (60 min) 

– NIST, Global Platform, TPM 2.0 

• A look ahead (10 min) 
– Challenges and summary 
Tutorial based on: Ekberg, Kostiainen and Asokan. The Untapped Potential of Trusted 
Execution Environments on Mobile Devices. IEEE S&P magazine, (to appear). (author copy) 
  

https://wiki.helsinki.fi/download/attachments/117218151/SP-2013-06-0097.R1_Kostiainen.pdf


4 

Tutorial slides 



A LOOK BACK 
Why do most mobile devices today have TEEs? 



6 

Platform security for mobile devices 

Regulators 
1. RF type approval  secure storage 
2. Theft deterrence  immutable ID 
3. … 

Mobile network operators 
1. Subsidy locks  immutable ID 
2. Copy protection  device 

authentication, app separation 
3. … 

End users 
1. Reliability  app separation 
2. Theft deterrence  immutable ID 
3. Privacy  app separation 
4. … 

Closed  open 
Different expectation 
compared to PCs 



7 

Early adoption of platform security 

GSM 02.09, 1993 

3GPP TS 42.009, 2001  

~2001 ~2002 ~2005 ~2008 

Different starting points compared to PCs: 
Widespread use of hardware and software platform security 



8 

Historical perspective 

Cambridge CAP 

1970 1980 1990 2000 2010 

Reference monitor 

Protection rings 

VAX/VMS 

Java security 
architecture 

Hardware-assisted 
secure boot 

Trusted Platform 
Module (TPM) 

Late launch 

Computer security 
Mobile security 
Smart card security 

Mobile hardware security 
architectures 

TI M-Shield 

ARM TrustZone 

Mobile OS security 
architectures 

Mobile Trusted 
Module (MTM) 

Simple smart cards 

Java Card 
platform 

TPM 2.0 

Intel SGX 

GP TEE standards 

TPM Mobile 

On-board Credentials 

First part  

Second part  



MOBILE HARDWARE SECURITY 
What constitutes a TEE? 



10 

1. Platform integrity 
2. Secure storage 
3. Isolated execution 
4. Device identification 
5. Device authentication 

TEE overview 

Platform 
integrity 

Device certificate 

Boot 
sequence  

Device 
identification 

Secure storage and 
isolated execution 

Cryptographic mechanisms 

Device 
authentication 

Base identity 

Verification root 

Device key 

Identity 

Public 
device key 

Trusted 
application 

TEE mgmt 
layer 

Non-volatile 
memory 

Volatile memory 

App 

Mobile OS 

REE 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

TEE 

Mobile device hardware 



11 

Secure boot vs. authenticated boot 

Firmware 

OS Kernel checker 

pass/fail Boot block 

pass/fail 

checker 

checker 

Secure boot Authenticated boot 

Firmware 

Boot block 

OS Kernel measurer 

measurer 

measurer state 



12 

Platform integrity 

TEE code 

Platform integrity 

Launch boot code 

Boot sequence  

Cryptographic mechanisms 
Trust anchor 

(Code) 

Legend 

External 
certificate 

Trust anchor 
(Hardware) 

Volatile memory 

Boot code certificate 

Boot code hash 

Verification root 

Mobile device hardware TCB 

Device key 

Non-
volatile 

memory 

Device identification 

Base 
identity 

Trusted 
Application 

(TA) 

TEE 
management 

Secure storage and 
isolated execution 



13 

Volatile memory 

Verification root 

Secure storage 

TEE code 

Secure storage 

Mobile device hardware TCB 

Trust anchor 
(Code) 

Legend 

External 
certificate 

Trust anchor 
(Hardware) 

Device key 

Non-
volatile 

memory 

Cryptographic mechanisms 

Device identification 

Base 
identity 

Trusted 
Application 

(TA) 

TEE 
management 

Platform integrity 

Boot sequence  



14 

Isolated execution 

TEE code 

Secure storage and 
isolated execution 

Mobile device hardware TCB 

Trust anchor 
(Code) 

Legend 

External 
certificate 

Trust anchor 
(Hardware) 

Trusted 
Application 

(TA) 

Cryptographic mechanisms 

Volatile memory 

Verification root 

TEE 
management 

TA code certificate 

TA code hash 

Device key 

Non-
volatile 

memory 

TEE Entry from Rich Execution Environment 

Boot sequence  

Platform integrity 

Base 
identity 

Device identification 



15 

Device identification 

TEE code 

Mobile device hardware TCB 

Trust anchor 
(Code) 

Legend 

External 
certificate 

Trust anchor 
(Hardware) 

Cryptographic mechanisms 

Verification root 

Identity certificate 

Assigned identity 

Device identification 

Base 
identity 

Base identity 

Platform integrity 

Boot sequence  

Volatile memory Device key 

Non-
volatile 

memory 

Trusted 
Application 

(TA) 

TEE 
management 

Secure storage and 
isolated execution 



16 

Verification root 

Device authentication (and remote attestation) 

TEE code 

Mobile device hardware TCB 

Trust anchor 
(Code) 

Legend 

External 
certificate 

Trust anchor 
(Hardware) 

Cryptographic mechanisms 

Device 
certificate 

Device public 
key 

Device 
authentication 

Identity 

Device key 

External trust 
root 

Volatile memory 

Boot sequence  

Platform integrity 

Non-
volatile 

memory 

Trusted 
Application 

(TA) 

TEE 
management 

Secure storage and 
isolated execution 



17 

1. Platform integrity 
– Secure boot 
– Authenticated boot 

Hardware security mechanisms (recap) 

TEE code 

Platform 
integrity 

TEE Entry from Rich Execution Environment 

Identity certificate 

Device certificate 

Launch boot code 

Boot code certificate TA code certificate 

Boot 
sequence  

Device 
identification 

Secure storage and 
isolated execution 

Cryptographic mechanisms 

Mobile device 
hardware TCB 

Device 
authentication 

Trust anchor 
(Code) 

Legend 

External 
certificate 

Trust anchor 
(Hardware) 

Base identity 

Verification root 

External 
trust root 

Device key 

Base identity 

Assigned 
identity 

Boot code hash TA code hash 

Identity 

Public 
device key 

Trusted 
application 

TEE mgmt 
layer 

Non-volatile 
memory 

Volatile memory 

2. Secure storage 
3. Isolated execution 

– Trusted Execution 
Environment (TEE) 

4. Device identification 
5. Device authentication 

– Remote attestation 

 



18 

Device 

TEE entry 

App 

Device OS 

Rich execution 
environment (REE) 

App 

TEE management layer 

Trusted 
app 

Trusted 
app 

TEE API 

Trusted execution 
environment (TEE) 

Device hardware and firmware with TEE support 

TEE system architecture 

Architectures with single TEE 
• ARM TrustZone 
• TI M-Shield 
• Smart card 
• Crypto co-processor 
• TPM 

 
Architectures with multiple TEEs 
• Intel SGX 
• TPM (and “Late Launch”) 
• Hypervisor 

Figure adapted from: Global Platform. TEE system architecture. 2011. 

http://www.globalplatform.org/specificationsdevice.asp


19 

External Security 
Co-processor 

External Secure Element 
(TPM, smart card) 

TEE component 

On-SoC 

RAM ROM 

OTP 
Fields 

External 
Peripherals 

Processor 
core(s) 

Off-chip 
memory 

TEE hardware realization alternatives 

Figure adapted from: Global Platform. TEE system architecture. 2011. 

Internal 
peripherals 

RAM ROM 

OTP 
Fields 

External 
Peripherals 

Processor 
core(s) 

Off-chip 
Memory 

Internal 
peripherals 

Embedded Secure Element 
(smart card) 

On-chip Security 
Subsystem 

On-SoC 

Processor Secure Environment 
(TrustZone, M-Shield) 

On-SoC 

RAM ROM 

OTP 
Fields 

External 
Peripherals 

Processor 
core(s) 

Off-chip 
Memory 

Internal 
peripherals 

http://www.globalplatform.org/specificationsdevice.asp


20 

SoC internal bus 
(carries status flag)  

Main CPU Modem 

Peripherals 
(touchscreen, 
USB, NFC…) 

Memory 
controller 

Memory 
controller 

Off-chip/main 
memory (DDR) 

System on chip (SoC) 

Boot 
ROM 

Access control 
hardware 

On-chip 
memory 

Access control 
hardware 

Access control 
hardware 

ARM TrustZone architecture 

TrustZone hardware architecture TEE entry 

App 

Mobile OS 

Normal world 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

Secure world 

Device hardware  

TrustZone system architecture 

Secure World and 
Normal World 



21 

TrustZone overview 
Secure World (SW) Normal World (NW) 

User mode 

Supervisor Supervisor 

User User 

SCR.NS=1 

Boot sequence 

Monitor 
Secure Monitor call  (SMC) 

SCR.NS=0 

SCR.NS := 1 

Privileged mode 

TZ-aware MMU 

 
 
 
 

SW RW 
NW NA 

SW RO 
NW WO 

SW RW 
NW RW 

physical address range 

Address space controllers 

On-chip ROM On-chip RAM Main memory (DDR) 



22 

TrustZone example (1/2) 

Secure World 
Supervisor 

Boot vector 

1. Boot begins in Secure World Supervisor mode (set access control) 

4. Prepare for Normal World boot 

Secure World 
Supervisor 

3. Configure address controller (protect on-chip memory) 

Secure World 
Supervisor 

2. Copy code and keys from on-chip ROM to on-chip RAM 

Secure World 
Supervisor 

On-chip ROM 

On-chip RAM 

Main memory 
(DDR) 

SW RW 
NW NA 

SW RW 
NW NA 

SW RW 
NW NA 

code (trusted OS) 
device key SW NA 

NW NA 

SW RW 
NW RW 

code (boot loader) 



23 

TrustZone example (2/2)  

5. Jump to Normal World Supervisor for traditional boot 

Secure World 
Supervisor Normal World 

Supervisor 

 An ordinary boot follows: Set 
up MMU, load OS, drivers… 

6. Set up trusted application execution 

Supervisor 

Normal World User 

Secure World 
Monitor 

Normal World 
Supervisor 

SMC, NS0 

7. Execute trusted application 

On-chip ROM 

On-chip RAM 

Main memory 
(DDR) 

SW NA 
NW NA 

SW RW 
NW NA 

SW RW 
NW RW 

trusted app and  
parameters 



24 

Mobile TEE deployment 

• TrustZone support available in majority of current 
smartphones 
 

• Mainly used for manufacturer internal purposes 
– DRM, Subsidy lock… 

 

• Third-party APIs emerging… 

TEE entry 

App 

Mobile OS 

Normal world 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

Secure world 

Smartphone hardware  



APPLICATION DEVELOPMENT 
Mobile hardware security APIs 



26 

Mobile hardware security APIs 

JSR 177 PKCS #11 

1. Standardized key stores: 

2. Proprietary hardware key stores: 
iOS Key Store Android Key Store 

Trustonic TEE API 

3. Programmable TEE 
“credential platforms”: 

On-board Credentials 



27 

Android Key Store API 

 
// create RSA key pair 
Context ctx; 
KeyPairGeneratorSpec spec = new KeyPairGeneratorSpec.Builder(ctx); 
spec.setAlias(”key1") 
…  
spec.build(); 
 
KeyPairGenerator gen = KeyPairGenerator.getInstance("RSA", "AndroidKeyStore"); 
gen.initialize(spec); 
KeyPair kp = gen.generateKeyPair(); 
 
 
// use private key for signing 
AndroidRsaEngine rsa = new AndroidRsaEngine("key1", true); 
PSSSigner signer = new PSSSigner(rsa, …); 
signer.init(true, …); 
signer.update(signedData, 0, signedData.length); 
byte[] signature = signer.generateSignature(); 

Android Key Store example 

Elenkov. Credential storage enhancements in Android 4.3. 2013. 

http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html


28 

Android Key Store implementation 

TEE entry 

Android 
app 

Android OS 

Normal world 

Android 
app 

Qualcomm Secure 
Execution Environment 

(QSEE) 

Java Cryptography 
Extensions (JCE) 

Secure world 

ARM with TrustZone 

Keymaster 
Trusted app 

Android device 

libQSEEcomAPI.so 

Selected devices 
• Android 4.3 
• Nexus 4, Nexus 7 

 
Keymaster operations 
• GENERATE_KEYPAIR 
• IMPORT_KEYPAIR 
• SIGN_DATA 
• VERIFY_DATA 

 

Persistent storage on Normal World 
 

Elenkov. Credential storage enhancements in Android 4.3. 2013. 

http://nelenkov.blogspot.ch/2013/08/credential-storage-enhancements-android-43.html


29 

Android Key Store 

• Available operations 
– Signatures 
– Encryption/decryption 

 
• Developers cannot utilize programmability of mobile TEEs 

– Not possible to run arbitrary trusted applications 
 

• Different API abstraction and architecture needed… 



30 

On-board Credentials goal 

? 
? 

Secure yet inexpensive 

An open credential platform that enables existing mobile TEEs 

Design constraints: 
– Open provisioning model 
– Limited secure (on-chip) secure memory 
– No access control architecture within TEE 

 



31 

On-board Credentials (ObC) architecture 
Mobile device 

Driver 

App 

Mobile OS 

Rich execution environment (REE) 

App 

Mobile device hardware with TEE support 

ObC Interpreter ObC scheduler 
Trusted app 
dynamic state 

Trusted app 
persistent store 

I/O data 
Interpreted code 
Interpreter state 

Loaded 
trusted app 

ObC API 
Provisioning, execution, sealing 

Trusted execution 
environment (TEE) 

Ekberg. Securing Software Architectures for Trusted Processor Environments. Dissertation, Aalto University 2013. 
Kostiainen. On-board Credentials: An Open Credential Platform for Mobile Devices. Dissertation, Aalto University 2012. 

https://aaltodoc.aalto.fi/handle/123456789/10165
http://lib.tkk.fi/Diss/2012/isbn9789526045986/


32 

Centralized provisioning vs. open provisioning 

Centralized provisioning 
(smart card, Trustonic) 

Central authority 

Service provider 

Service user device 

Service provider Service provider 

Service user device 

Service provider Service provider Service provider 

Open provisioning 
(On-board Credentials) 



33 

Open provisioning model 

1. Certified device key + user authentication 
PK 

User device Service 
provider 

2. Provision new family 
Enc(PK, FK) establish new security 

domain (family) 

4. Provision trusted applications 
AuthEnc(FK, hash(app)) + app 

3. Provision new secrets 
AuthEnc(FK, secret) 

Certified device key 
PK 

Pick new ‘family key’ FK  
Encrypt family key 
Enc(PK, FK) 

Authorize trusted 
applications 
AuthEnc(FK, hash(app)) 

 
install trusted apps, 
grant access to secrets 

Encrypt and authenticate 
secrets 
AuthEnc(FK, secret) install secrets, associate 

them to family 

Principle of same-origin policy 

Kostiainen, Ekberg, Asokan and Rantala. On-board Credentials with Open Provisioning. ASIACCS 2009. 

http://dl.acm.org/citation.cfm?doid=1533057.1533074


34 

• Trusted application development 
– BASIC like scripting language 
– Common crypto primitives 

available (RSA, AES, SHA) 
 

• REE application counterpart 
– Standard smartphone app 

(Windows Phone) 
– ObC API: provisioning, trusted 

application execution 

 
rem --- Quote operation 
if mode == MODE_QUOTE 
  read_array(IO_SEALED_RW, 2, pcr_10) 
  read_array(IO_PLAIN_RW, 3, ext_nonce) 
 
rem --- Create TPM_PCR_COMPOSITE 
pcr_composite[0] = 0x0002    rem --- sizeOfSelect=2 
pcr_composite[1] = 0x0004    rem --- PCR 10 selected (00 04) 
pcr_composite[2] = 0x0000    rem --- PCR selection size 20 
pcr_composite[3] = 0x0014                
append_array(pcr_composite, pcr_10) 
sha1(composite_hash, pcr_composite) 
 
rem --- Create TPM_QUOTE_INFO 
quote_info[0] = 0x0101       rem --- version (major/minor) 
quote_info[1] = 0x0000       rem --- (revMajor/Minor) 
quote_info[2] = 0x5155       rem --- fixed (`Q' and `U') 
quote_info[3] = 0x4F54       rem --- fixed (`O' and `T') 
 
append_array(quote_info, composite_hash) 
append_array(quote_info, ext_nonce) 
write_array(IO_PLAIN_RW, 1, pcr_composite) 
 
rem --- Hash QUOTE_INFO for MirrorLink PA signing 
sha1(quote_hash, quote_info) 
write_array(IO_PLAIN_RW, 2, quote_hash) 
 

On-board Credentials development 

ObC trusted application extract 

 
// install provisioned credential 
secret = obc.InstallSecret(provSecret) 
app = obc.InstallCode(provApplication) 
credential = obc.CreateCredential(secret, 
 app, authData) 
 
// run installed credential 
output = obc.RunCredential(credential, input) 
 

ObC counterpart application pseudo code 

Service 
provider 



35 

Example application: MirrorLink attestation 

• MirrorLink system enables smartphone services in automotive context 
• Car head-unit needs to enforce driver distraction regulations 
• Attestation protocol 

– Defined using TPM structures (part of MirrorLink standard) 
– Implemented as On-board Credentials trusted application (deployed to Nokia devices) 

http://www.mirrorlink.com  

Car head-unit 

Kostiainen, Asokan and Ekberg. Practical Property-Based Attestation 
on Mobile Devices. TRUST 2011. 

1. Attestation request 

2. Attestation response 

3. Enforce driver distraction 

Smartphone 
(with ObC) 

http://www.mirrorlink.com/
http://link.springer.com/chapter/10.1007/978-3-642-21599-5_6
http://link.springer.com/chapter/10.1007/978-3-642-21599-5_6


37 

TEE Use Cases 

• Mobile ticketing with NFC and TEE 
• 110 traveler trial in New York (summer 2012) 

• Implemented as On-board Credentials trusted application 
• Deployed to Nokia devices 

Example application: Public transport ticketing 

Ekberg and Tamrakar. Tapping and Tripping with NFC. TRUST 2013 Skip to <tBase 

Offline terminal 

Transport  
authority 
system 

Accounting 
system 

Online terminal 

Transaction evidence  
(authenticated counter as ObC app) 

http://link.springer.com/chapter/10.1007/978-3-642-38908-5_9


39 

Application development summary 

• Previously mainly internal purposes 
– DRM, subsidy lock 

 

• Third-party APIs have started to emerge 
– Android KeyStore (TrustZone) 
– Trustonic security API 

 

• Research for open TEEs 
– On-board Credentials with open provisioning 

 

• Standardization would help developers… 

TEE entry 

App 

Mobile OS 

REE 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

TEE 

Device hardware  

Mobile device 



BREAK 
See you in 10 minutes… 



41 

• L4:  minimized kernel: IPC, scheduling, MMU 
• Run-Time Manager: Installation, I/O.  
• Crypto driver: key access, crypto, RNG, secure storage 
• Smart-card like provisioning and life-cycle model for TAs 
• Global Platform compatibility 

kernel 

Run-Time 
Manager 

Crypto  
   Driver 

Crypto &  
other drvrs 

Content 
  Mgmt 

System and 
3rd-party TAs 

Security domain 
mgmt 
TA mgmt monitor 

Boot assertions 

 keys, accelerators, devices  

MMU Scheduler 

Handler extensions 

Trustonic <t-base TEE 



42 

Rich world 
application 

mcOpenSession 
(void *, int len, ..) 

TCI buffer 

Privileged mode 

User space 

MMU(Rich world) VM  
address 

MMU (Sec world) 
Rich w

orld 

Secure W
orld 

Run-Time 
Manager 

Kernel 
VMM mgr 

Trusted 
application 

stack, code, bss 

1MB 

1MB 

TCI buffer 

void tlMain( 
    addr tciBuffer, 
    int    tciBufferLen) 

void *secVirt  = 
mcMap  
(void *, int len)  
  
 opt. mapping 

1MB 

Phys. m
em

ory 

<t-base TA invocation 



48 

 
 
1. Open connection to TEE 
 
2. Open session 
      - provide TA 
      - Opt: provide shared mem. 
 
3. Communicate 
 
4. Terminate session and  
     connection 

static TEEC_Result Run (TEEC_Session *session, 
            unsigned char *pData) 
{ 
  TEEC_Result nError; 
  TEEC_Operation sOperation; 
 
  memset(&sOperation, 0, sizeof(TEEC_Operation)); 
  sOperation.paramTypes = TEEC_PARAM_TYPES( 
     TEEC_MEMREF_TEMP_INOUT, TEEC_NONE,  
     TEEC_NONE, TEEC_NONE); 
  sOperation.params[0].tmpref.buffer = pData; 
  sOperation.params[0].tmpref.size = 512; 
 
  nError = TEEC_InvokeCommand(session, 
     CMD_GENKEY, &sOperation,  NULL); 
 
  return nError; 
} 

#define CMD_GENKEY 1 

Code Example: Rich World 



49 

 
 
1. Provide handlers for  

-  instantiation / unload 
      -   session open / close 
 
 
2. Provide code for 
      - function that 
         is called 

TA_InvokeCommandEntryPoint(void* pSessionContext, 
   uint32_t nCommandID, 
   uint32_t nParamTypes, TEE_Param pParams[4]) 
{ 
… 
  switch(nCommandID) 
  { 
     case CMD_GENKEY: 
      if (nParamTypes != CMD_GENKEY_PTYPES) {…} 
      pInput = pParams[0].memref.buffer; 
      size = (uint32_t)pParams[0].memref.size; 
      if (TEE_CheckMemoryAccessRights( … ) { … } 
     TEE_AllocateTransientObject(TEE_TYPE_RSA_KEYPAIR,  
               maxObjectSize, &keyObj)) 
     TEE_GenerateKey(keyObj, 2048, NULL, 0); 
     TEE_GetObjectBufferAttribute(keyObj,  
            TEE_ATTR_RSA_MODULUS, …); 
     TEE_FreeTransientObject(keyObj); 
     return TEE_SUCCESS; 
… 
 

#define CMD_GETKEY 1 

Code Example: Secure World 



50 

 <tbase demo 

www.arndaleboard.org 

TEE entry 

App 

Android 

Normal world 

App 

Trusted OS 

Secure world 

Device hardware  

Samsung 
Exynos 
  5250 

Console 

Android  
command line 

”Google 
Nexus 10” 

• Run a dev-board so that we  
can see the activity 
 
 



51 

Application development summary 

• Previously mainly internal purposes 
– DRM, subsidy lock 

 

• Third-party APIs have started to emerge 
– Android KeyStore (TrustZone) 
– Trustonic <tbase 

 

• Research for open TEEs 
– On-board Credentials with  

open provisioning 
 

• Standardization would help  
developers… 

TEE entry 

App 

Mobile OS 

REE 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

TEE 

Device hardware  

Mobile device 

Skip to Outline 



BREAK 
See you in 10 minutes… 



53 

Outline 

• A look back (10 min) 
– Why mobile devices have TEEs? 

• Mobile hardware security (30 min) 
– What constitutes a TEE? 

• Application development (30 min) 
– Mobile hardware security APIs + DEMO 

 
Break (10 min) 

 
• Current standardization (60 min) 

– NIST, Global Platform, TPM 2.0 

• A look ahead (10 min) 
– Challenges and summary 

Tutorial based on: Ekberg, Kostiainen and Asokan. The Untapped Potential of 
Trusted Execution Environments on Mobile Devices. IEEE S&P magazine, 2013.  



STANDARDIZATION 
NIST guidelines, Global Platform, Trusted Computing Group, Jedec 



55 55 

TEE-related standards and specifications 

Isolation Integrity Storage 

Trusted Execution  
Environments (TEE) 

-  First versions of standards already out 
-  Needed for compliance/interoperability  
-  Enables app developers to leverage TEEs 

OS 

Secure  
Boot 

Functional 
API 

Code execution 
(and provisioning) 

RPMB 

http://www.jedec.org/


EFI SECURE BOOT 



57 

Firmware init 

EFI applications 

EFI drivers 

Things that e.g. sets up the device (like TZ) 

Driver firmware setup 

EFI drivers EFI drivers EFI OS loaders Boot loaders 

     OS Replacement for BIOS 
Secure Boot is an optional feature 
 
 

UEFI –boot principle 

Unified Extensible Firmware Interface Specification 
 
Nyström et al: UEFI Networking and Pre-OS security (2011) 

http://www.uefi.org/specs/download/UEFI_2.4.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf
http://noggin.intel.com/sites/default/files/tech_journal_full_pdfs/intelr_technology_journal_volume_15_issue_1_2011.pdf


58 

Platform Key (Pub/Priv) 

Key Exchange Keys 

Platform Firmware 
Key Storage 
 
tamper-resistant 
updates governed by 
     platform key 

Key management for  
updates 

UEFI – secure boot 



59 

Platform Key (Pub/Priv) 

Key Exchange Keys 

Platform Firmware 
Key Storage 
 
tamper-resistant 
updates governed by 
     platform key 

(ref: UEFI spec) 

Signature Database (s)  

Keys allowed to 
update 

Key management  
for updates 

tamper-resistant  
    (rollback prevention) 
updates governed by keys 

UEFI – secure boot 



60 

Platform Key (Pub/Priv) 

Key Exchange Keys 

Platform Firmware 
Key Storage 
 
tamper-resistant 
updates governed by 
     platform key 

(ref: UEFI spec) 

Image Information Table 
hash 
name, path 
 Initialized / rejected 
 

Successful & 
failed 
authorizations 

Signature Database (s)  

Keys allowed to 
update 

Key management for update 

tamper-resistant  
    (rollback prevention) 
updates governed by keys 

White list + Black list for database images 

UEFI – secure boot 



ROOTS OF TRUST (HARDWARE ANCHORS) 



62 

Required security components are  
 
a) Roots of Trust (RoT)  

 
b)   an application programming interface (API) to expose the  
 RoT to the platform  
 
c)  a Policy Enforcement Engine (PEnE)” 
 
“RoTs are preferably implemented in hardware”  

•   
 

Guidelines on Hardware-Rooted 
Security in Mobile Devices (SP800-164, draft) 



63 

RoT for  
Storage 

RoT for  
Verification 

RoT for 
Measurement 

RoT for 
 Reporting 

RoT for 
Integrity 

Protected 
Storage 

Isolation Device Integrity 

Roots of  
Trust 

Security  
Capabilities 

Operating System 

App 

App 

App App 

Picture: Andrew Regenshield: NIST/Computer Security Division  

Secure Capabilities built from Roots-of-Trust 



67 

Isolation 

ARM TrustZone + Secure Boot + Secrets = RoT? 
 

 1. Secure boot   Root of Trust for Verification 

 2. Measuring in secure boot  Root of Trust for Measurement 

 3. Device key + code in TZ TEE  Root of Trust for Reporting 

 4. TEE secure memory  Root of Trust for Integrity 

 5. Device key + TEE   Most of Root of Trust for Storage. No easy 
            rollback protection. 
 

Integrity Storage 

Trusted Execution Environment (TEE) 



GLOBALPLATFORM ™ 

Specifications: www.globalplatform.org 

http://www.globalplatform.org/


69 

Most of the smart-card based ecosystems around authentication, payment  
and ticketing make use of Global Platform standards: 
- For card interaction and provisioning protocols 
- For reader terminal architecture and certification 
 
The Global Platform Device Committee specifies architecture and interfaces 
for a trusted operating system in a TEE  
 
 
References: 
http://www.globalplatform.org/specificationsdevice.asp   
- TEE System Architecture 
- TEE Client API Specification v.1.0 
- TEE Internal API Specification v1.0   
- Trusted User Interface API v 1.0 

Global Platform 

http://www.globalplatform.org/specificationsdevice.asp


70 

GlobalPlatform 
Smart card 
specifications 
 

TPM 

ISO 7816  

TPM APIs 
(TSS, TDDLI) 

Security enablers / service APIs 

       PKCS#11, PC/SC, JSRs  

OMA 

Rich world 
apps 

EMV 

Global Platform in industry 
 

GlobalPlatform 
TEE 
specifications 
 

GP Client APIs 

Rich world 
apps 

Rich world 
apps ETSI/3GPP 

? 



71 

Isolation 
boundary TEE 

Trusted Operating System 

Secure Storage Crypto I/O RPC 

TEE Internal API v.1.0 

Trusted 
Application 

“Rich Execution  
Environment” 

OS 

TEE Client API v.1.0 

“Normal” 
Application 

Global Platform Device Architecture 
     

- API to communicate with the TEE  
- System interface library (libc ..) for Trusted Applications with 
   RPC, crypto and necessary I/O functions  

Eventually,  these APIs may become the reference model for writing code for and  
interacting with a TEE. Missing pieces still include provisioning and compliance aspects 

Trusted User Interface API v.1.0 



72 

                                                     (adapted from example in TEE Client API specification) 
 
result = TEEC_InitializeContext( NULL, &context); 
result = TEEC_OpenSession(&context, &session, &cryptoTEEApp, TEEC_LOGIN_USER, 
                                                 NULL,  NULL, NULL); 
commsSM.size = 20; commsSM.flags = TEEC_MEM_INPUT | TEEC_MEM_OUTPUT; 
result = TEEC_AllocateSharedMemory(&context, &commsSM); 
 
// omitted: registration of additional shared memory for in-place encryption of data 
operation.paramTypes = TEEC_PARAM_TYPES(TEEC_VALUE_INPUT, TEEC_MEMREF_PARTIAL_INPUT, 
                                                                                        TEEC_NONE, TEEC_NONE); 
ivPtr = (uint8_t*)commsSM.buffer; memset(ivPtr, 0, 16);  // Set input (IV) 
operation.params[0].value.a = 1;                                            // Set input (key handle=1) 
operation.params[1].memref.parent = &commsSM; 
operation.params[1].memref.offset = 0; 
operation.params[1].memref.size = 20; 
 
result = TEEC_InvokeCommand(&session, CMD_ENCRYPT_INIT, &operation, NULL); 

Interaction with a TEE (GP) -- caller 

D2  Val:1 CMD 

Ref 

N/A 

N/A 

Parameters: 

Setting up parameters 



73 

                         
Mandatory handler functions: 
 
TA_CreateEntryPoint(void); / TA_DestroyEntryPoint(void);  
 
TA_OpenSessionEntryPoint(uint32_t param_types, TEE_Param params[4], void **session)  
 
TA_CloseSessionEntryPoint (..) 
 
 
TA_InvokeCommandEntryPoint(void *session, uint32_t cmd, 
                  uint32_t param_types, TEE_Param params[4]) 
{ 
 switch(cmd) 
 { 
    case CMD_ENCRYPT_INIT: 
  .... 
 } 
} 
 

Interaction with a TEE (GP) -- callee 

D2  Val:1 CMD 

Ref 

N/A 

N/A 

Parameters: 

May point to 
any memory 
chosen by TA 

Constructor / Destructor 



74 

TEE 

Trusted Operating System 

Secure Storage Crypto I/O RPC 

TEE Internal API v.1.0 

Trusted 
Application 

“Rich Execution  
Environment” 

OS 

TEE Client API v.1.0 

“Normal” 
Application 

 
TA pointer to shared memory in the callers’ context. 
 
Efficient mechanism for in-place encryption / decryption etc. 
 
The TA programmer must be aware of differences in memory references.  
Ekberg et al, Authenticated Encryption Primitives for Size-Constrained Trusted Computing, TRUST 2012 

Interaction with a TEE (GP) 
 

1 

2 

http://link.springer.com/chapter/10.1007/978-3-642-30921-2_1
http://link.springer.com/chapter/10.1007/978-3-642-30921-2_1
http://link.springer.com/chapter/10.1007/978-3-642-30921-2_1


75 

 
RPC: Communication with other TAs  

 
Secure storage: Memory / objects in a TA can be persistently stored 

Storage and RPC (GP TEE internal API) 

 
TEE_CreatePersistentObject(TEE_STORAGE_PRIVATE, objID, objIDLen, flags, attributes, .., handle) 
 
TEE_ReadObjectData(handle, buffer, size, count); 
TEE_WriteObjectData(handle, buffer, size); 
TEE_SeekObjectData(handle, offset, ref); 
TEE_TruncateObjectData(handle, size); 
 
 

bytes read 

handle 

Object identifer metadata 

”file pointer” 

 
TEE_OpenTASession(TEE_UUID* destination, …,  paramTypes, params[4], &session); 
TEE_InvokeTACommand(session, …, commandId, paramTypes, params[4]); 
 
(The invocation calls the same interface as the one used for external calls) 



76 

Trusted path to user (GP) 
• Trustworthy user interaction needed 

– Provisioning 
– User authentication 
– Transaction confirmation 

• Trusted User Interface API 1.0:  
– Set up widget structures 
– Call TEE_TUIDisplayScreen 
– Collect results 

• Only for I/O directly wired to 
to the trusted OS  
 
 
 

TEE entry 

App 

Mobile OS 

REE 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

TEE 

Smartphone hardware  



77 

GP device committee is working on a TEE provisioning specification 

User-centric provisioning white paper 

issuer /  
service provider 

manufacturer 
user 

Trad: 

New: 
token 
provider 

user service  
provider 

service 
manager 

GP User-Centric provisioning model 

http://www.globalplatform.org/documents/Consumer_Centric_Model_White_PaperMar2012.pdf
http://www.globalplatform.org/documents/Consumer_Centric_Model_White_PaperMar2012.pdf
http://www.globalplatform.org/documents/Consumer_Centric_Model_White_PaperMar2012.pdf


JEDEC ™ 

Specifications: www.jedec.org 

http://www.globalplatform.org/


79 

Jedec is primarily known for standards like DDR, MMC , UFS, but is 
important esp. in microelectronics. 
 
RPMB: Replay-Protected Memory Block 
 Separate partition in the MMC 
 Authenticated channel 

 
 

 

JEDEC RPMB in e·MMC v4.41 and v4.5 

Boot 2 

RPMB 

Boot 1 

RPMB 
 
 
 

AuthKey 

TEE 
 
 
 

AuthKey 

Memory write/reads 
protected with HMAC-SHA256 

Write Counter 

Random values for freshness 
Counter binding for replay protection 
 (write) 



TRUSTED COMPUTING GROUP 
TPM / TPM2 / TPM MOBILE  

Specifications: www.trustedcomputinggroup.org 
 

http://www.globalplatform.org/


81 

TCG Trusted Platform Module (TPM) 

• an application interface to secure services 
  

• deployed to hundreds of millions of PCs and 
laptop  (v1.2. chip + drivers) 
 

• potential way applications and OS services 
interact with platform security  

 



82 

• Component that collects state and is separate from  
system on which  it reports 
 

• Relies on Roots of Trust 
 

• For remote parties  
 Remote attestation in well-defined manner  

Authorization for functionality provided by the TPM 
 

• Locally 
• Key generation and key use with TPM-resident keys  
• Secure binding with encryption, as well as non-volatile storage 
• An engine for encryption / decryption and signing, also for hash  

algorithms and symmetric ciphers 
 

 
 

TPM 



83 

• An enforcing component or mechanism  
for services outside the TPM 
 

• An eavesdropping channel for remote monitoring  

 Secure Boot  +  (GP TEE  OR  TPM) 
 
         can potentially be used to violate privacy 
  alternatively, it can be used to protect user privacy 

A TPM is NOT 

HOWEVER 



84 

RTM 

Code 1 H=H(new | H-old)  
H=H(m3 | H(m2 | H (m1))) 
H(0) = 0 

measure m1 
send m1 to TPM 
launch code 1 

Code 2 measure m2 
send m2 to TPM 
launch code 2 

Code 3 measure m3 
send m3 to TPM 
launch code 3 

… 

... Measurement aggregation for eventual binding or attestation  
 

... A given expected PCR value can ONLY be reached by a correct extension 
     sequence 
 

... In an aggregate with a trustworthy root, any divergence in reported events  
     causes an irrevocable change in the eventual PCR value. 
  

Remote Attestation: 
SIG(chall, PCR value) 

Platform Configuration Register (PCR) 

Authenticated  
boot 



85 

A TPM profile for Mobile devices (v 1.2. & v.2) that adds mechanisms for  
 
 Adaptation to TEEs: 

New RoT definitions and requirements for TEE adaptation 
 

Multi-Stakeholder Model (MSM):  
      Rich Application – Trusted Application – TPM relation 

Measurements, lifecycle models 
Relations between different ”types” of TPM mobiles 

 
 ”Certified boot”:  
 Secure boot with TCG authorizations 
 (RIM Certificates  TPM2 authorization) 
 
  

TPM Mobile  (Mobile Trusted Module) 



86 

TPM Mobile on GP TEE 
(Whitepaper: TPM on GP TEE) 

TEE entry 

Rich App 

Mobile OS 

REE 

Rich App 

Trusted OS 

TA TPM 

TEE 

Smartphone hardware  

TEE Client API 

TPM Client API 

TEE Internal API  +  
TEE trusted UI ++ 

TA 

RoT for  
Storage 

RoT for  
Verification 

RoT for 
Measurement 

RoT for 
 Reporting 

RoT for 
Integrity 

• Do GP TEEs provide needed functionality? 
• Do GP TEEs provide needed security assurance? 

 

http://www.trustedcomputinggroup.org/files/static_page_files/5999C3C1-1A4B-B294-D0BC20183757815E/TPM MOBILE with Trusted Execution Environment for Comprehensive Mobile Device Security.pdf


87 

TAs 

Isolation 
boundary 

Trusted Operating System 

Secure Storage Crypto I/O RPC 

“Platform” 
TPM 

“Rich Execution  
Environment” 

OS 

“Normal” 
Application 

Application 
specific TPMs 

Application 
specific TPMs 

Application 
specific TPMs 

Application 
specific TPMs 

Normal 
application 

TPM TSS 

A TEE can host a mumber of ”simultaneous” TPMs 
One TPM (platform) is needed for OS services – say secure boot 
 
Most applications do not need dedicated code (a TA) in the TEE. But they may 
need secure storage, state-aware keys, and attestation for those  

TPM Mobile Multi-Stakeholder Model (MSM) 



88 

TPM authorization 

• Many users of varying security levels 
 

• System state awareness is a fundamental to TPMs – 
sets TPMs apart from e.g. removable smartcards.  
 

• To implement any TPM service that enforces 
control, authorization is essential 
 
 



89 

Authorization (policy) TPM 1 

TPM 1 

Object (e.g. key) 

System 

System 
state info 

Object invocation 

Object authorization 

External auth (e.g. password) 

ruleset 

MTM added key authorization, but only for PCRs 



90 

Authorization (policy) TPM2 

TPM2 

Object (e.g. key) 

System 

System 
state info 

Object invocation 

Object authorization 

Other 
TPM objs 

Commands to include 
some part of TPM2  
(system) state in  
policy validation 

session 

reference value: authVal 



91 

TPM2 Policy Session 
‹ different types of preconditions can be part of an 

authorization policy (session) 

‹ In addition, logical relations should be applicable on the 
set of atomic preconditions that constitutes  the policy 
(AND, OR)  

‹ A policy session accumulates all policy information 
needed to make the authorization decision.  



92 

TPM2 Policy Session Contents 
‹ An accumulated session policy value called policyDigest 

newDigestValue :=  H(oldDigestValue ||  
                                          policyCommand  || stateinfo ) 

‹ Some policy commands reset the value 

IF condition THEN  
newDigestValue :=  H( 0 || policyCommand  
                                          || stateinfo ) 

‹ Session also contains optional assertions  
to be made at object access. 

  

 

 

policyDigest 

Deferred checks: 
- PCRs changed 
- Applied command 
- Command locality 



93 

TPM2 Policy Command Examples 
‹ TPM2_PolicyPCR: Include a set of PCR values in the authorization  

 sessionUpdate.state_info :=  [pcr value, pcr index} 

‹ TPM2_PolicyNV: Include a reference value and operation index in 
case a comparison ( <, >, eq) of a non-volatile memory area with the 
reference succeeds.  

 e.g., if counter5  > 2 then  
 sessionUpdate.state_info := [ ref, op, mem.area ] 

 



94 

TPM2 Deferred Policy Examples 

‹ TPM2_PolicyCommandCode: Include the command code specification  
  in session: 
  sessionUpdate.state_info := command code 
        deferred : policySession->commandCode := command code 

 

‹  TPM2_PolicyLocality: Restrict the operation to a given locality:     
 sessionUpdate.state_info := locality 
        deferred : policySession->commandLocality := locality 

 



95 

TPM2 PolicyOR 

TPM2_PolicyOR: Authorize one of several options: 
  Input: List of digest values <D1, D2, D3, .. > 
 
  IF policySession->policyDigest in List THEN 
 newDigestValue :=  H(0 || policyCommand  || List)      

    Reasoning:  H(List) is known (fixed) policy. For a wrong  
      digest Dx (not in set <D1 D2 D3> ) it is difficult to find another  
      List2 = <Dx Dy, Dz, .. >  where H(List) == H(List2)       

 

PolicyDigest 

H(.) 

PolicyDigest 

D1  D2  D3  

PolicyDigest 

PolicyDigest 

D1  D2  D3  

(Failing OR) 

(Successful OR) 

TPM_PolicyOR-> 

TPM_PolicyOR-> 



96 

”TPM2 PolicyAND” 
‹ There is no explicit AND command 

‹ AND is achieved by to consecutive policy commands  order 
dependence  

 

 

PolicyDigest 

H(.) 

PolicyCommandCode 

D1  D2  

Theoretical example: Use an OR to hide the 
order dependence of an AND  

PolicyPCR 

PolicyDigest 

PolicyPCR 

PolicyCommandCode 



97 

External Authorization 
TPM2_PolicyAuthorize: Validate a signature on a policyDigest: 
 
 IF signature validates  
   AND policySession->policyDigest in signed content  
THEN 
   newDigestValue :=  H(0 || policyCommand  || pub|| ..)  

pub 

PolicyDigest 

PolicyAuthorize 

priv 

TPM2 + 
 policy session 

H(pub) 

Z 

Z 



98 

Simple secure boot is not always enough 
Secure boot can have the following properties 
 
A) Extend all the way into OS / application booting  

 
B) Can include platform-dependent policy 

 
C) Can include optional / complementary boot branches 

 
D) Order in which components are booted may matter  

 
 

TPM2 authorizations can be used for secure boot: 
Example follows 



99 

TAs 

Trusted Operating System 

Secure Storage Crypto I/O RPC 

“Rich Execution  
Environment” 

OS 

“Normal” 
Application 

Normal 
application 

TEE 

Load 
driver? 

“Platform” 
TPM2 

Authorizing entity 

1. UEFI started the boot process 
2. A UEFI program loads the TEE, TPM etc (PCR 1) 
3. A UEFI OS loader loads the OS (PCR 2) 
4. The OS boots 
5. We want to (dynamically) load the driver that communicates with 

some aspect of the TEE  --- the TPM must of course be accessible  

Secure boot “constructed example” 



100 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR update  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

We need 
something to 

authorize.. 



101 

TAs 

Trusted Operating System 

Secure Storage Crypto I/O RPC 

“Rich Execution  
Environment” 

OS 

“Normal” 
Application 

Normal 
application 

TEE 
“Platform” 

TPM2 

We ’own’ PCR 5 authorization. Let’s add  
authValue X (non-modifiable) 

PCR5 X 

Example policy 

00000 

What is a good value for X? 



102 

pubA 

PolicyDigest 

PolicyAuthorize 

privA 

H(pubA)==X 

Y 

Y 

Example policy 
If X is H(pubA)                [  actually H(0 || PolicyAuthorize  || pubA || ..) ] 

we can authorize 
any value Y as policy 
for PCR 5 

Y  PolicyAuthorize(SigA(Y))  X 

TEE 
“Platform” 

TPM2 
PCR5 X 00000 eventually compare.. 



103 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Y  PolicyAuthorize(SigA (Y))  X 



104 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Y  PolicyAuthorize(SigA (Y))  X 

If we want to make sure 
PCRExtend is used and not 
e.g. PCRReset: 
 
   
TPM2_PolicyCommandCode 
                    or 
     TPM2_PolicyCPHash 



105 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 



106 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 

To bind a PCR value: 
 
   TPM2_PolicyPCR (index(1), value(expected meas.)) 
                                                   (actually an aggregate PCR hash) 



107 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 

W  PolicyPCR(1, meas.)  Z 



108 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 

W  PolicyPCR(1, meas.)  Z 

We want to support two OS variants based on a PCR2 value: 
  
  TPM2_PolicyOR ({V1, V2})  



109 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 

PolicyOr({V1,V2} W  PolicyPCR(1, meas.)  Z V1  
V2  



110 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 

PolicyOr({V1,V2} W  PolicyPCR(1, meas.)  Z V1  
V2  

Provider of OSB may do certified or authenticated boot. Thus: 
 
    Possibly there are many more authorizations needed  
    (like a PolicyNV) 
 

                                         or 
 

     The OS provider updates PCR2 with result of some 
PolicyAuthorize(SigOSB(...)) and guarantees its own freshness 



111 

Example policy 

Platform A kernel 

Platform B kernel 

OR CTR5 > 2 

AND 

Ext.sign. 

measurementPCR 2 

MeasurementPCR 2 

OS driver for TEE  
will be measured and  
launched 

measurement PCR5 

IF 

Rollback protection .. 

UEFI drivers M 
completed successfully 

Secure side loaded 

AND 

Measurement PCR 3 

Assumptions 

AND 

Policy applies only 
to PCR updates  

Driver supplier can  
change policy later 

UEFI program N 
completed successfully 

Secure side loaded 

MeasurementPCR 1 

AND 

Z  PolicyCommandCode(TPM_PCRExtend)Y  PolicyAuthorize(SigA(Y))  X 
{Check: Eventual command == TPM_PCRExtend} 

PolicyOr({V1,V2} W  PolicyPCR(1, meas.)  Z V1  
V2  

PolicyPCR(2, H(...))  
PolicyPCR(2, H(...))  

 
 



112 

‹ UEFI starts TEE and lauches OS   PCR1 updated 

‹ Operating System boots up  

‹ TPM PolicyAuthorize OS manufacturer PCR2 updated  

‹ TPM_PolicyPCR (PCR 2 ”Sign of OS provider”),  OS OK 

‹ TPM_PolicyOR  One of two OSs values accepted 

‹ TPM_PolicyPCR (PCR 1, ”H(TEE meas.)”)  TEE version correct 

‹ TPM_PolicyCommand (PCRExtend)  Only authorize a PCRExtend 
command 

‹ TPM PolicyAuthorize ”I” authorize the collected state 

TPM_PCRExtend(PCR 5, measurement value) 

 

Po
lic

y 
Se

ss
io

n 

X=X 

{Check: Eventual command == TPM_PCRExtend} 

Recap: Example “boot sequence” 



113 

Chipset 
ROM 
 

Deployed standards:Nokia Lumia Secure Boot Flow 

Primary 
Boot 
Loader 

 

eMMC 
 
 
 
 
 
 
 
 
 
 
 
 

TrustZone HW 
 
 
 
 
 
 
 
 
 
 

eFuses 
 

Trusted 
OS 
 

UEFI 
 

OS 
kernel 

OS 
binary 

Secondary 
boot 
loaders 

UEFI 

OS 

OS 
binary 

OS 
binary 

    1. Transitive trust chain begins  
             (Platform RoT is in eFuse) 

2. Trusted OS  
integrity is verified 

3. Trusted OS verifies UEFI 

Replay 
protected 
memory 
block  

5. UEFI verifies OS boot manager using certificates 
from RPMB (Replay Protected Memory Block) 

6. UEFI Boot Manager verifies OS kernel 

7. OS kernel verifies OS binaries 

TrustZone 
SW core 

TPM  
app 

Platform Root 
Of Trust 

TPM 

UEFI certificates 

4. UEFI loads TPM app  
into Trusted OS  TPM provides services  

for kernel boot 

Source Nokia: Presented at RSA conf. 2013 



A LOOK AHEAD 
 

Challenges ahead and summary 

Skip to summary 



116 

Challenges ahead 

• What is the right TEE architecture? 
– Processor secure environments vs. Separate secure elements vs ...? 

• Hardware security and privacy 
– Secure  boot and control points, TEE rootkits 

• Provisioning 
– Does ‘open provisioning’ emerge as viable alternative for centralized model? 

• Trusted user interaction 
– How to establish a secure channel between TEE and the user?  

• Certification / verification 
– How to gain confidence in TEE designs? 

 
 



117 

What is the right TEE architecture? 

• Processor security architecture vs. embedded secure 
element vs. some combination? 

• New designs like Intel SGX 
• Multiple cores multiple TEEs 
• Dealing with peripherals (UI, sensors, NFC, ...) 



118 

Hardware security and user privacy? 

• Secure boot can be used to limit user choice 
 

• Vulnerabilities in TEE implementation → rootkits 



119 

What is the right provisioning model? 

Assisting entity Service user device 

Service provider Service provider Service provider 

Kostiainen, Asokan and Afanasyeva. Towards User-Friendly Credential Transfer on Open 
Credential Platforms. ACNS 2011. 

Assist in 
provisioning 
and lifecycle 
management 

• Open provisioning 
– Easy service deployment 
– But challenging lifecycle 

management 

 
• Hybrid model? 

http://dx.doi.org/10.1007/978-3-642-21554-4_23
http://dx.doi.org/10.1007/978-3-642-21554-4_23


120 

How to provide trusted path to the user? 

• Trustworthy user interaction needed 
– Provisioning 
– User authentication 
– Transaction confirmation 

 
• Technical implementation possible 

 
• But how does the user know? 

– Secure attention key (ctrl-alt-del) 
– Security indicator 

TEE entry 

App 

Mobile OS 

REE 

App 

Trusted OS 

Trusted 
app 

Trusted 
app 

TEE 

Smartphone hardware  



121 

Verification and certification? 

• Common Criteria model may not be suitable for TEEs 
– too slow 
– too inflexible (cannot efficiently deal with software upgrades) 

 

• Alternatives may/will emerge 
– UK: CPA  

http://www.cesg.gov.uk/servicecatalogue/CPA/Pages/CPA.aspx  
 

http://www.cesg.gov.uk/servicecatalogue/CPA/Pages/CPA.aspx


122 

Summary 

• Hardware-based TEEs are widely deployed on mobile devices 
– But access to application developers has been limited 
– This is about to change 

 
• TEE functionality and interfaces are being standardized 

– Promise of better third-party developer access 
– GlobalPlatform TEE architecture 
– Trusted Computing Group: TPM 2.0 specification 

 
• Many open issues lie ahead… 

 
• Thank you for any feedback (contact info in author copy) 

 Ekberg, Kostiainen and Asokan. The Untapped Potential of Trusted Execution 
Environments on Mobile Devices. IEEE S&P magazine, (to appear). (author copy)  

https://wiki.helsinki.fi/download/attachments/117218151/SP-2013-06-0097.R1_Kostiainen.pdf


123 

Forthcoming e-book 

“Mobile Platform Security” 
(to be published by Morgan-Claypool) 

 
Draft version at publisher stand (lobby) 

 
Publisher offers to give you a free copy! 


	Trusted Execution Environments on Mobile Devices 
	What is a TEE?
	Outline
	Tutorial slides
	A look back
	Platform security for mobile devices
	Early adoption of platform security
	Historical perspective
	Mobile Hardware security
	Slide Number 10
	Secure boot vs. authenticated boot
	Platform integrity
	Secure storage
	Isolated execution
	Device identification
	Device authentication (and remote attestation)
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	TrustZone example (1/2)
	TrustZone example (2/2) 
	Mobile TEE deployment
	Application development
	Slide Number 26
	Slide Number 27
	Android Key Store implementation
	Slide Number 29
	Slide Number 30
	On-board Credentials (ObC) architecture
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Example application: Public transport ticketing
	Application development summary
	BREAK
	Trustonic <t-base TEE
	<t-base TA invocation
	Code Example: Rich World
	Code Example: Secure World
	 <tbase demo
	Application development summary
	BREAK
	Outline
	Standardization
	TEE-related standards and specifications
	Efi secure boot
	UEFI –boot principle
	UEFI – secure boot
	UEFI – secure boot
	UEFI – secure boot
	Roots of trust (hardware anchors)
	Guidelines on Hardware-Rooted�Security in Mobile Devices (SP800-164, draft)
	Secure Capabilities built from Roots-of-Trust
	Slide Number 67
	GlobalPlatform ™
	Global Platform
	Global Platform in industry�
	Slide Number 71
	Interaction with a TEE (GP) -- caller
	Interaction with a TEE (GP) -- callee
	Slide Number 74
	Slide Number 75
	Trusted path to user (GP)
	GP User-Centric provisioning model
	Jedec ™
	JEDEC RPMB in e·MMC v4.41 and v4.5
	Trusted Computing Group�TPM / TPM2 / TPM mobile 
	TCG Trusted Platform Module (TPM)
	TPM
	A TPM is NOT
	Platform Configuration Register (PCR)
	TPM Mobile  (Mobile Trusted Module)
	TPM Mobile on GP TEE
	TPM Mobile Multi-Stakeholder Model (MSM)
	TPM authorization
	Authorization (policy) TPM 1
	Authorization (policy) TPM2
	TPM2 Policy Session
	TPM2 Policy Session Contents
	TPM2 Policy Command Examples
	TPM2 Deferred Policy Examples
	TPM2 PolicyOR
	”TPM2 PolicyAND”
	External Authorization
	Simple secure boot is not always enough
	Secure boot “constructed example”
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Example policy
	Recap: Example “boot sequence”
	Deployed standards:Nokia Lumia Secure Boot Flow
	A look ahead�
	Challenges ahead
	What is the right TEE architecture?
	Hardware security and user privacy?
	Slide Number 119
	How to provide trusted path to the user?
	Verification and certification?
	Summary
	Forthcoming e-book

