1. Introduction: Architectural Overview

Tenttiarkisto is a web application that uses the Ruby on Rails framework. It has been developed by software production group "Tarkisto" whose members are:

· Sami Saada

· Anni Laurila

· Petri Karjalainen

· Anna Kuosmanen

· Tuomas Husu

· Tuomo Niemelä

	Päivämäärä
	Kohde
	Tekijä
	Kuvaus

	3.6.2010
	whole document
	Petri & Anni
	document created (skeleton)

	11.6.2010
	4.1 scenarios
	Tuomo & Anni
	added use case scenariot

Tenttiarkisto is created to be a tool to assist studying for the Computer Science Department of Helsinki University.

<lisää aiheeseen liittyvät dokumentit tähän (määrittely, suunnittelu etc.)>

2. System Purpose: Requirements

2.1 Functional Requirements

- Must be able to display exams that have been added to the database

- Must be able to add new exams to the database

- Must be able to browse through courses and their related exams

- Must be able to produce practice exams based on questions from past exams

- Must be able to be viewed in multiple languages

- Must be intergrated to the department LDAP system

2.2 Non-functional Requirements
--> Bullet point list
--> e.g. expected unit test ratio, expected test coverage, expected
performance

- All of the funtional requirements 100% tested

3. Structure

3.1 Overview: overall structure
--> Diagram of all components and their collaboration with each other

3.2 Components
 for each component:
 - description of the component
 - components responsibilities
 - interfaces that the component offers
 - constraints
 - collaboratoring components
 for each collaborating component:
 - description of the collaboration
 - interfaces used
 - constraints

Application Controller

- Superclass of the controllers

- Sets the default for all other controllers inside the application

- Interfaces:

- None

- Limitations:

- Should only contain methods usable by all controllers

- Collaborating components:

- All other controllers:

- Inherit methods

4. Dynamic Behavior

4.1 Scenarios:
 for each scenario:
 - type: system operation or use case
 - description of the scenario
 - how scenario interacts with components

Use Case: Login to the system

User wants to login to the system and is in the dashboard. She writes her cs-username and password in to the autentication fields and clicks ’login’-button. System checks the credentials and logs user in or informs user about bad credentials.

Use Case: Browse course information
After use case ‘login to the system’ user views list of courses in the dashboard and selects either (1) spesific course (2) exam generation (3) adding exam. <lisää tähän säännöt, joilla kurssit näkyvät dashboardilla>
Use Case: Browse exams
After use case ‘browse course information’ (selected (1)) user sees listing of all exams related to the course. System shows exam type, date and download format.
Use Case: Generate exam
After use case ‘browse course information’ (selected (2)) user can generate practise exam selecting her own definitions from the following <lisää määritykset>. System shows her the generated exam.
Use Case: Add new exam
After use case ‘browse course information’ (selected (3)) user can add a new exam by typing the questions to textfields and possible adding pictures, forms and/or code. She needs to also select a date, lecturer, question’s max points and <lisää tähän muut tiedot>.
Use Case: Search for courses
After use case ‘login to the system’ user can search courses by their name or nickname. If the course was found then the use case ‘browse exams’ is taken place.

5 Other Views

5.1 Process: in a running system, how components are divided as processes
--> e.g. There are can be multiple instances of KujeProcessor, but can
there be multiple instances of KujeServer?
--> Has multiple instances of KujeProcessor ever been tested? Has
multiple instances of KujeServer ever been tested?

5.2 Development: Where in code the codebase components are implemented

5.3 Physical: How components are separated in the hardware level
--> e.g. Division between the frontend and the backend; list also all physical
dependencies between components, e.g. "KujeProcessor and WebApp must stay
on the same physical server because..."

5.4 Deployment: How components are deployed and possible constraints

