
Copyright 2008 IEEE. Reprinted with permission. Publishedin Proc. IEEE Int. Conf. on Wireless and Mobile Computing (WiMob) 2008

Combating Packet Reordering in Vertical Handoff using Cross-layer
Notifications to TCP

Laila Daniel, Ilpo Järvinen, Markku Kojo
Department of Computer Science

PL 68, University of Helsinki, 00014 Finland
Email: {firstname.secondname}@cs.helsinki.fi

Abstract

In this paper we propose an enhancement to the TCP
sender algorithm to combat packet reordering that may oc-
cur due to a vertical handoff from a slow to a fast access
link. The proposed algorithm employs cross-layer notifica-
tions regarding the changes in the access link characteris-
tics. Our algorithm avoids unnecessary retransmissions by
dynamically changing the dupthresh value according to the
bandwidth and delay of the old and new access links in-
volved in the handoff. In addition it uses DSACK informa-
tion to infer that there are no congestion-related losses and
selects proper values for cwnd and ssthresh after the hand-
off. Simulation results show that the unnecessary retrans-
missions caused by packet reordering in a vertical handoff
can be effectively minimized over a wide range of bandwidth
and delay ratios of the access links. In addition, our algo-
rithm is effective in reducing the congestion-related packet
losses due to a decrease in bandwidth-delay product (BDP)
after a handoff.

1. Introduction

Packet reordering is not an uncommon phenomenon in
the Internet [3]. The main reasons for the occurrence
of packet reordering are local parallelism in high-speed
routers, differentiated services, link layer retransmissions
in wireless links and multi-path forwarding [22]. Multi-
path forwarding may take place in some wireless overlay
networks when a mobile node (MN) switches between dif-
ferent access technologies.

With the proliferation of wireless access technologies to
the Internet, MNs equipped with multiple radio interfaces
(for example, WLAN and GPRS/UMTS) are increasingly
common. During the lifetime of a connection, an MN may
switch among different access networks to have the best
of connectivity, services quality, application needs and/or
user preferences. Vertical handoff refers to the switching
between the access points based on different link layer tech-

nologies [15]. The bandwidth and latency of the access
links involved in a vertical handoff may differ by an or-
der of magnitude. For example, in a handoff from GPRS
to WLAN, the effective bandwidth typically increases from
200 Kbps to 5 Mbps (a maximum of 55 Mbps) while the la-
tency decreases from 300 ms to less than 10 ms. In a make-
before-break handoff [15], the connection to the old access
router is broken only after the new connection is operational
and for a while the packets can traverse both the paths.
The differences in bandwidth and RTT of these paths may
lead to packet reordering. In a break-before-make handoff
packet reordering is not common as the connection to the
old access router is broken before the connection to the new
access router is made.

Packet reordering may have adverse effects on TCP.
TCP relies on duplicate acknowledgements (dupacks) and
retransmission timeouts (RTOs) to detect a packet loss.
When a number ofdupacksequal to a preset value (called
dupthresh, usually 3) arrive at the TCP sender, TCP as-
sumes that a packet loss has occurred, triggers thefast re-
transmitalgorithm to retransmit the first unacknowledged
segment, reduces the congestion window (cwnd) and slow-
start threshold (ssthresh) and continues infast recovery[2].
If the dupackshave been generated due to packet reorder-
ing, suchfalse fastretransmitand the consequent reduction
in sending rate degrades TCP performance [5, 22].

Several measures have been proposed to avoid the prob-
lem of packet reordering [5, 22, 4]. In all these schemes,
dupthreshvalue is increased which enables TCP to avoid
taking congestion control measures to a certain degree when
reordering occurs but it increases the recovery time for
dropped packets as timely action for packet losses cannot be
taken. If TCP does not receive enough dupacks, e.g., due to
small window size when a packet loss occurs, the TCPfast
retransmitalgorithm will not be invoked which results in a
retransmission timeout that drastically reduces the through-
put. Thenodupackscheme proposed in [10] to combat the
problem of packet reordering due to a vertical handoff sup-
presses the transmission ofdupacksduring a handoff and
it may need timeout recovery in case of packet losses. So

— 1 —

there is a tradeoff between timely detection of packet loss
and making TCP robust to packet reordering.

Various techniques to increase thedupthreshvalues to
avoid the triggering of thefast retransmitalgorithm have
been proposed in [5]. These techniques use a variant of
the Limited Transmit algorithm[1] to preserve the ACK-
clocking by sending new data for every seconddupack. Re-
ordering Robust-TCP (RR-TCP) proposed in [22] uses the
DSACK [9] information to vary thedupthreshvalue adap-
tively for triggering thefast retransmitalgorithm. It pro-
poses several algorithms for avoiding the false retransmits
proactively. TCP-NCR [4] roughly increase thedupthresh
value based on the congestion window of data. TCP-NCR
also extends TCP’sLimited Transmit algorithmto allow the
sending of new data during the period when the TCP sender
is engaged in distinguishing between loss and reordering.
TCP-NCR and TCP-RR try to avoid triggering falsefastre-
transmitsdue to packet reordering, but these schemes do not
take into account of the characteristics of the new link after
a vertical handoff. This may lead to either underutilization
of the new path or packet losses if the capacity of the new
path is smaller. The algorithm we propose in this paper also
tries to adapt to the characteristics of the new path after a
vertical handoff.

Eifel [14] is designed to detect and avoid unnecessary re-
transmissions and also to undo congestion control measures
already taken. If the bottleneck link bandwidth-delay prod-
uct (BDP) of the new path after a vertical handoff is smaller
than that of the old path, restoring the congestion window
is likely to result in congestion on the new bottleneck link.
According to [6], the congestion control measures that have
been taken already should be undone only if all retransmit-
ted packets in a particular window have been retransmitted
unnecessarily. In a vertical handoff, as the path characteris-
tics may change after the handoff, the TCP sender may have
to wait for a very long time to confirm that all the retrans-
missions in a particular window were unnecessary. So in
vertical handoff scenarios, to undo the congestion control
measures already taken, the TCP sender needs additional
information about the new path as there can be a significant
change in the delay and the bandwidth of the paths involved
in a handoff.

Estimating the changes in the end-to-end path proper-
ties after a vertical handoff is difficult as well as time con-
suming. If the TCP sender is explicitly notified about the
changes in the access link properties such as bandwidth and
delay due to a vertical handoff it can infer the possibility
of packet reordering and defer from invoking thefast re-
transmit algorithm even when three dupacks arrive. The
TCP layer on an MN can be locally informed of the changes
in the attached access link characteristics by using a cross-
layer notification. As the TCP layer at the other end of the
connection, at the correspondent node (CN), is not aware

of such changes, the introduction of an explicit end-to-end
notification will help TCP to adapt to the changes due to a
vertical handoff [20, 7, 19, 8, 12, 13].

This paper reports a follow-up work on the research pre-
sented in our earlier papers [7, 8]. In those papers we de-
scribed the various problems arising from a vertical hand-
off including packet reordering and proposed algorithms to
mitigate the effect of some of these problems such as spu-
rious RTOs, congestion-related packet losses, fast conver-
gence to the new RTT and unused connection time. How-
ever, combating the effect of packet reordering was left for
future work. In this paper we propose a solution to the prob-
lem of packet reordering due to a vertical handoff by intro-
ducing an enhancement to the TCP sender algorithm which
makes use of the cross-layer notifications about the band-
width and delay of the access links involved in a handoff.
The resulting TCP adaptively determines adupthreshbased
on the bandwidth and delay of the old and the new links.
After a vertical handoff, it sets thecwndandssthreshbased
on the access link parameters and DSACK information. Ex-
perimental results show that our enhanced TCP algorithm is
able to adapt to a vertical handoff by minimizing the unnec-
essary retransmissions.

The rest of the paper is organized as follows. In Section
2 we describe the problem of packet reordering arising from
a vertical handoff. In Section 3 we present the algorithm to
mitigate the effects of packet reordering. In Section 4 we
evaluate the performance of the proposed TCP algorithm in
various vertical handoff scenarios. In Section 5 we present
the conclusions of this study.

2. Packet reordering due to vertical handoff

Packet reordering may occur when a make-before-break
handoff occurs from a slow access link to a fast access
link [10, 7]. During a make-before-break handoff, an MN
can receive packets through the old link as well as through
the new link. The sequence numbers of the packets arriv-
ing through the new link are greater than the expected se-
quence number as the packets with high sequence numbers
sent after the handoff through the fast new link arrive at the
TCP receiver earlier than the packets sent before the hand-
off through the slow old link. As a consequence of this re-
ordering, the TCP receiver sendsdupacksover the new link.
When the TCP sender gets threedupacks, it triggersfast re-
transmit and fast recoveryalgorithms, and as a result the
cwndand thessthreshare reduced. As thedupacksarrive
not due to packet loss but due to reordering, the retransmis-
sions are unnecessary. Thecwnd reduction is undesirable
unless the BDP of the new path is smaller than that of the
old path.

We study the effect of reordering due to a vertical hand-
off using ns-2 [17] simulations. The baseline TCP for our

 140

 150

 160

 170

 180

 190

 200

 11.5 12 12.5 13 13.5

 S
eq

ue
nc

e
N

um
be

r

Time

Data
ACK

Handoff

Fast retransmit

Fast retransmit

(a) Regular TCP

 140

 150

 160

 170

 180

 190

 200

 11.5 12 12.5 13 13.5

 S
eq

ue
nc

e
N

um
be

r

Time

Data
ACK

Fast retransmit

Handoff

(b) Enhanced TCP

Figure 1: Comparison of regular TCP and enhanced TCP: make-before-break handoff at 12 sec from a 200 Kbps/300 ms link
to a 800 Kbps/75 ms link.

 260

 280

 300

 320

 340

 360

 19.8 20 20.2 20.4 20.6 20.8 21

 S
eq

ue
nc

e
N

um
be

r

Time

Data
ACK

Handoff
Fast retransmit

(a) Regular TCP

 260

 280

 300

 320

 340

 360

 19.8 20 20.2 20.4 20.6 20.8 21

 S
eq

ue
nc

e
N

um
be

r

Time

Data
ACK

Handoff
Fast retransmit

(b) Enhanced TCP

Figure 2: Comparison of regular TCP and enhanced TCP: make-before-break handoff at 20 sec from a 200 Kbps/300 ms link
to a 1600 Kbps/37 ms link.

study is the TCP-Sack1 algorithm in ns-2 and we refer to it
as regular TCP. We now describe the behaviour of regular
TCP for two packet reordering scenarios where the ratio of
the delays (or bandwidths) of the old and the new links are
such that the arrival pattern ofdupacksdiffer. The BDP of
the links involved in a handoff is kept constant in order to
isolate the effect of reordering.

Consider a handoff from a 200 Kbps/300 ms link to a
800 Kbps/75 ms link, the ratio of the link delays is 4 and
the two links have the same BDP of 10 packets. An in-
teresting behaviour of regular TCP is shown in Figure 1a.
A handoff occurs at 12.00 sec, and 8 out-of-order packets
are received but they are not consecutive as the packets sent
before handoff through the old link arrive at the receiver in-
between. As the first two groups ofdupacksconsist of only
two of them, thefast retransmitis triggered only by the third
dupacksgroup at 12.40 sec. The last packet through the
old link arrives earlier than the retransmissions through the

new link and the fast recovery completes at 12.65 sec. The
unnecessary retransmissions through the new link gener-
ate dupacks and TCP invokesfast retransmitunnecessarily
again at 12.75 sec. Thus TCP reduces thecwndtwice which
brings down the sending rate. While the reordering and TCP
enteringfast retransmitare observed to occur nearly at all
handoff points, the behaviour described above where TCP
subsequently goes intofast retransmitis observed in 20 %
of the handoff points.

Figure 2a shows a time-sequence graph for a handoff
from a 200 Kbps/300 ms link to a 1600 Kbps/37 ms link.
In scenario of the Figure 2a the handoff occurs at 20.00 sec
and the last packet sent before handoff arrives at the receiver
at about 900 ms after the handoff. All forward progress of
the flow happens over the new link starting from a reordered
ACK at 20.07 sec. Then six packets are received out of or-
der and theirdupackstrigger fast retransmit at 20.19 sec. 12
packets are unnecessarily retransmitted.

We observe that as the ratio of the link delays increases,
the fast retransmitalgorithm is triggered immediately after
a handoff and the number of unnecessary retransmissions
increases. Our algorithm described in Section 3 minimizes
these unnecessary retransmissions.

3. The proposed algorithm

As the end-to-end path characteristics of a TCP con-
nection over a fixed Internet can be assumed to be rela-
tively stable over the lifetime of the connection, we regard
the changes in the path characteristics as arising from the
changes in the access link characteristics due to a vertical
handoff. We calculate a set of parameters from the access
link characteristics. These parameters are taken as a rough
estimate of the link characteristics and the algorithm makes
a conservative use of these values in order to ensure that the
lack of accuracy in determining these parameters does not
make the algorithm aggressive.

Cross-layer notifications have been shown to be benefi-
cial to TCP when path characteristics change widely due to
a vertical handoff [20, 19, 7, 8, 21]. Many evaluations have
been made on how to deliver the link characteristics infor-
mation [20, 12, 13, 18, 21]. In essence, the TCP layer at
the MN can be locally notified of the changes in the local
link characteristics during a vertical handoff. This informa-
tion can be sent to the TCP layer at the CN as a TCP option
or along with the mobility registration message such as the
binding update message in Mobile IPv6 [11] to be further
forwarded to the TCP layer. A TCP sender can interpret
the notification from the lower layers as a hint about the
characteristics of the end-to-end path and adjust the con-
gestion control parameters and RTO estimate so as to adapt
to the new path in an efficient and timely manner. But even
though a very conservative TCP approach is selected like
with theResponse Connectivity Change Indication(RLCI)
mechanism [21] which forces TCP to slow-start if the new
network path is unknown, unnecessary retransmissions may
occur in the case of make-before-break handoffs.

In this work we model that the MN can deliver the hand-
off notification piggybacked in the mobility signalling mes-
sages so that it can be delivered to the TCP layer at the CN
exactly when the handoff completes. Along with the cross-
layer notification regarding the handoff, the TCP sender
gets the information regarding the bandwidth and delay of
the old and the new access links. The enhancements pro-
posed here are TCP sender-specific and are invoked only
upon the arrival of the handoff notification. So in the ab-
sence of the handoff notification, we get the performance of
the regular TCP.

The enhancement to the TCP sender algorithm (with
SACK [16] option enabled) to minimize the unnecessary
retransmissions due to packet reordering in a vertical

When handoff notification arrives with the
information regarding the old and the new access links

// Congestion possible due to bandwidth/BDP decrease?
If (FlightSize > 2 · BDPnewlink)

Setcwnd reduction to 1
If ((cwnd reduction = 1) AND

(BDPoldlink > BDPnewlink) AND
(BWnewlink < 8 · BWoldlink))

Setcwndandssthreshto max(2, BDPnewlink)
If (TCP is not already in Loss recovery)

// False fast retransmit possible due to reordering?
If ((BWnewlink > 3 · BWoldlink) AND

(cwnd reduction = 0))
setreordering flag to 1
dupthresh= max(BWnewlink

BWoldlink

, 3)

In Fast retransmit:
Retransmit the first unACKed segment
If (reordering flag = 1)

Savecwndin cwnd prev

In Fast Recovery:
If (reordering flag = 1)

Send a new segment for everydupack
If (# of dupacks> dupthresh)

Setreturn fastrecovery to 1
Return to the normal fast recovery

On the arrival of a new ACK indicating that
all packets sent before handoff are ACKed:

Resetcwnd reduction

If ((DSACK indicates that the retransmission
after the handoff was unnecessary) AND
(return fastrecovery = 0) AND
(cwnd< min(cwnd prev, BDPnewlink))

Setcwndto min(cwnd prev, BDPnewlink)
Setssthreshto max(cwnd prev, BDPnewlink)

Resetreordering flag, return fastrecovery

Resetdupthreshto 3
If (there is a significant change in delay)

Update the RTT variables

Figure 3: Algorithm to minimize the unnecessary retrans-
missions due to packet reordering in a vertical handoff

handoff is given in Figure 3. The parameters used in the
proposed algorithm such as BDP of an access link and the
RTT of the data segment-ACK pair traversing an access
link are calculated as follows:
BDP<link>= BW<link> · RTT<link>

RTT<link> = 2 · D<link> + SDpkt<link> + SDack<link>

where
SDpkt<link> - Data packet serialization delay on the access link
SDack<link>- Serialization delay of ACK on the access link
D<link> - Propagation delay of the access link
BW<link> - Bandwidth of the access link

The enhanced TCP algorithm is invoked when a handoff
notification arrives with the information regarding the
old and the new access links. The algorithm is executed
only if there is no imminent congestion in the new path.
At the time of a handoff, if theFlightSizeis greater than
the buffering capacity of the new link, packet losses due
to congestion may occur after the handoff. Therefore
we check whether theFlightSize exceeds the estimated
buffering capacity of the new link. We assume that the
router queue size in front of the access link equals the BDP
of the link so that the link has a total buffering capacity
of twice the link BDP. If there is congestion, we set the
flag cwndreduction, and modify cwnd and ssthreshas
follows. Thecwndandssthreshare set toBDPnewlink if
the BDP of the old link is greater than the BDP of the new
link and the new link bandwidth is less than 8 times the
old link bandwidth; otherwisecwnd and ssthreshremain
unchanged. We observe from our experiments that if the
new link bandwidth is greater than 8 times the old link
bandwidth, the TCP sender is able to recover packet losses
due to decrease in BDP usingfast recovery. Reducing the
cwnd in this scenario will reduce the sending rate thereby
adversely affecting the performance of TCP. Any procedure
related to DSACK detection and change ofdupthreshis
invoked only if there is no congestion in the new link at the
time of handoff.

The enhanced algorithm makes use of the cross-layer in-
formation to determine whether reordering due to the hand-
off can lead to a falsefast retransmit. If the ratio of the new
bottleneck link bandwidth to the old bottleneck link band-
width is greater than thedupthresh, enoughdupacksmay
be generated to trigger a falsefast retransmit. If this condi-
tion arises, the algorithm sets a flag calledreordering-flag
andmax(BWnewlink

BWoldlink

, 3) is set as thedupthresh. In fast re-
transmit, if the reordering-flagis set, TCP retransmits the
first unacknowledged segment and saves thecwndin a vari-
ablecwnd prev. For everydupackwhich arrives infast re-
covery, TCP sends a new segment to keep the ACK-clock
running until one of the following events occurs: (1) If the
total number ofdupacksexceeds thedupthresh, TCP goes
back tofast recoveryand sets the flagreturn fastrecovery,
(2) If all the packets sent before handoff have been acknowl-
edged, TCP resets thedupthreshback to the normal value
of 3. If the segment retransmitted after the handoff is iden-
tified as unnecessary by the DSACK information, and TCP
has not returned tofast recovery, the algorithm infers that
thedupacksare generated by packet reordering and are not
due to congestion and calculates the newcwndandssthresh
values. If the currentcwnd is less than bothcwndprev
andBDPnewlink , then TCP setscwndto the smaller of the
cwndprevand theBDPnewlink andssthreshto the larger
value so that TCP can slow start to find the new path char-
acteristics.

The main advantages of our algorithm are (1) it is con-
servative in that it will not restore thecwnd and ssthresh
if congestion exists in the network path, (2) it utilizes the
new path partially while waiting for the packets to arrive
through the old path, and (3) it effectively uses the DSACK
information to set thecwndandssthreshof the new path.

4. Simulation results

In this set of experiments, we consider the vertical
handoff scenarios where packet reordering occurs, i.e., the
handoffs from a low-bandwidth/high-delay link to a high-
bandwidth/low-delay link. In order to study the effect of
the change in BDP after a handoff, we categorize our exper-
iments into the following three classes: (1) handoff between
same BDP links, (2) handoff from a high BDP to a low BDP
link, and (3) handoff from a low BDP to a high BDP link.

The simulation environment is the same as that described
in our earlier paper [8]. We consider a single TCP flow
from the CN to the MN. The TCP packet size is 1500 bytes
with the TCP/IP headers included. In our experiments a 20-
second interval is chosen to cover all the phases of a TCP
connection and a handoff can occur uniformly in any of the
200 points at 100 ms intervals. The duration of each test run
includes the completion of the handoff occurring in the 20-
second interval. No link errors are modelled as we assume
that the packet losses are due to congestion. This choice is
justified as the present study is devoted to the effect of ver-
tical handoff on TCP. In this set of experiments, the hand-
off occurs from a low-bandwidth/high-delay link to a high-
bandwidth/low-delay link. The old link bandwidth/delay is
fixed at 200 Kbps/300 ms and the new link bandwidth/delay
is varied.

To study the behaviour of TCP with vertical handoff we
focus on how TCP behaves immediately after the hand-
off. As a performance index, we calculate the time taken
to transfer (to get the acknowledgment) ’n’ new data pack-
ets after a handoff through the new path where n varies from
50 to 200. We report the results only for the case where n is
100 as the results obtained are similar for all values of n.

4.1. Handoff between same BDP links

In this set of experiments the old link bandwidth/delay is
fixed at 200 Kbps/300 ms and the new link bandwidth/delay
is varied between 400 Kbps/150 ms and 6400 Kbps/9 ms
as shown in Figure 4a. With regular TCP we observe that
packet reordering due to a handoff from a high-delay link to
a low-delay link triggers falsefast retransmitsin more than
80 % of the handoff points except in the case of a handoff
to the 400 Kbps/150 ms link in which not enoughdupacks
are generated. As a result many packets are retransmitted

unnecessarily andcwndandssthreshare reduced. The cor-
responding results for enhanced TCP show that unnecessary
retransmissions are avoided.

Figure 1 compares the behaviour of regular TCP and en-
hanced TCP for a handoff at 12 sec from 200 Kbps/300 ms
to 800 Kbps/75 ms link. We can see that as enhanced TCP
retransmits only the first unacknowledged segment, the fast
retransmit triggered by the unnecessary retransmissions is
avoided and enhanced TCP is able to send more packets
than regular TCP which accounts for its slightly better (10
%) performance.

Figure 2 shows the behaviour of regular TCP and en-
hanced TCP when the handoff occurs at 20 sec from a 200
Kbps/300 ms link to a 1600 Kbps/37 ms link. Even though
the time taken for both regular and enhanced TCP to send
100 packets is almost the same, enhanced TCP avoids un-
necessary retransmissions and window reduction.

As the ratio of the delay of the old and new link increases
(handoff to 6400 Kbps/9ms link) regular TCP is able to send
more packets through the new fast link even though there
are unnecessary retransmissions and window reduction. En-
hanced TCP waits for all the packets through the old slow
link to arrive and does not fully utilize the capacity of the
new link even though it is transmitting one packet perdu-
packwhich results in poor performance (20 %). In such sit-
uations where the new link has a significantly higher band-
width and lower delay than the old link, we have to examine
whether it is preferable to wait for the packets through the
old link so that we can avoid unnecessary retransmissions
andcwnd reduction or to utilize the available capacity of
the high-bandwidth link although a part of the capacity is
wasted in unnecessary retransmissions.

4.2. Handoff from a high BDP link to a low
BDP link

In this set of experiments the new link BDP is five pack-
ets half that of the old link. When there is a BDP decrease
after a handoff our algorithm to mitigate the effect of packet
reordering is not invoked as the fast retransmit algorithm
may be triggered due to packet losses caused by BDP de-
crease. We can see in Figure 4b that in all handoff scenarios
except the case of the handoff to a 400 Kbps/75 ms link
enhanced TCP behaves similar to regular TCP. In the case
of a handoff to a 400 Kbps/75 ms link, regular TCP needs
RTO recovery to recover the lost packets due to BDP change
whereas with enhanced TCP the packet losses are kept to a
minimum as we set thecwnd to the BDP of the new link,
yielding about 20 % reduction in transfer time. For the
handoff to 800 Kbps/37 ms link, setting thecwnd to the
BDP of the new link, reduces the packet losses but the re-
duction in sending rate nullifies the improvement achieved.
For the handoffs to 1600Kbps/ 18 ms link, 3200Kbps/9 ms

link and 6400 Kbps/ 4 ms link as our algorithm is not at all
invoked the behaviour is similar to regular TCP.

4.3. Handoff from a low BDP link to a high
BDP link

In this set of experiments the new link BDP is 20 packets,
double that of the old link. As can be seen in the Figure 4c,
the proposed algorithm is effective (up to 30 % reduction
in transfer time) with the increase in BDP after a handoff.
Our algorithm is not invoked in the handoff to 400 Kbps/
300 ms link as there is no scenario leading to a falsefast
retransmit. In the case of handoff to 800Kbps/ 150 ms link,
regular TCP suffers from multiple fast retransmits similar
to the case described in Figure 1a resulting in high variation
in the quartile values, whereas enhanced TCP yields a 38 %
reduction in transfer time. For the cases of handoff to 3200
Kbps/37 ms and 6400 Kbps/ 18 ms links, enhanced TCP
avoids unnecessary retransmissions even though the trans-
fer time is comparable with that of regular TCP. In general,
avoiding the unnecessary retransmissions as well as win-
dow reduction and slow starting to the new BDP makes the
enhanced TCP perform better than regular TCP.

5. Conclusions and future work

In this paper we have proposed an enhancement to the
TCP sender algorithm which makes use of the cross-layer
notifications to avoid the problems of TCP due to packet
reordering in a make-before-break vertical handoff. Simu-
lation results presented in the paper show the effectiveness
of the algorithm when the bandwidth(or delay) ratio of the
access links varies over a wide range. Further study is re-
quired to see when it is preferable to utilize the high capac-
ity link available after a handoff instead of taking measures
to avoid unnecessary retransmissions.

As it is difficult as well as unreliable to obtain the ex-
act bandwidth and delay of the access links, we have used
the link characteristics available from the MN as hints or
bounds for setting the initial values of the TCP congestion
control parameters. We need to study how the information
obtained by probing the end-to-end path characteristics can
be integrated with the cross-layer notification for a faster
convergence of TCP parameters after a vertical handoff.

The study on the effect of vertical handoff on TCP and
the algorithm proposed are based on our experiments with
a single TCP flow. In the presence of multiple flows, the
algorithms are likely to require further enhancements. In
addition to the experimentation of the algorithm with multi-
ple flows we intend to evaluate the algorithm in real network
environments.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

T
im

e
to

 tr
an

sf
er

-1
00

 p
ac

ke
ts

af
te

r
ha

nd
of

f (
se

co
nd

s)

New link Bandwidth/Delay

400K
150ms

800K
75ms

1600K
37ms

3200K
18ms

6400K
9ms

TCP
EnhancedTCP

(a) To same BDP

 0

 1

 2

 3

 4

 5

 6

T
im

e
to

 tr
an

sf
er

-1
00

 p
ac

ke
ts

af
te

r
ha

nd
of

f (
se

co
nd

s)

New link Bandwidth/Delay

400K
75ms

800K
37ms

1600K
18ms

3200K
9ms

6400K
4ms

TCP
EnhancedTCP

(b) To low BDP

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

T
im

e
to

 tr
an

sf
er

-1
00

 p
ac

ke
ts

af
te

r
ha

nd
of

f (
se

co
nd

s)

New link Bandwidth/Delay

400K
300ms

800K
150ms

1600K
75ms

3200K
37ms

6400K
18ms

TCP
EnhancedTCP

(c) To high BDP

Figure 4: Transfer time for 100 packets after a make-before-break handoff (a) to a same BDP link (b) to a low BDP link
(c) to a high BDP link with varying bandwidth/delay of the newlink while the old link is fixed at 200Kbps/300ms (200
repetitions). The x-axis shows the link parameters and the y-axis shows the lower quartile, median, and upper quartile of the
time (in seconds) to transfer 100 new packets after the handoff.

References

[1] M. Allman, H. Balakrishnan, and S. Floyd. Enhancing
TCP’s Loss Recovery Using Limited Transmit. RFC 3042,
Jan. 2001.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581, Apr. 1999.

[3] J. Bennett, C. Partridge, and N. Shectman. Packet reorder-
ing is not pathological network behavior.IEEE/ACM Trans.
Netw., 7(6):789–798, 1999.

[4] S. Bhandarkar, A. L. N. Reddy, M. Allman, and E. Blan-
ton. Improving the Robustness of TCP to Non-Congestion
Events. IETF RFC 4653, Apr. 2006.

[5] E. Blanton and M. Allman. On Making TCP More Robust
to Packet Reordering.ACM Computer Communication Re-
view, 32(1), Jan. 2002.

[6] E. Blanton and M. Allman. Using TCP Duplicate Selective
Acknowledgement (DSACKs) and Stream Control Trans-
mission Protocol (SCTP) Duplicate Transmission Sequence
Numbers (TSNs) to Detect Spurious Retransmissions. RFC
3708, Feb. 2004.

[7] L. Daniel and M. Kojo. Adapting TCP for Vertical Handoffs
in Wireless Networks. InProc. 31st IEEE Conference on
Local Computer Networks (LCN’06), pages 151 – 158, Nov.
2006.

[8] L. Daniel and M. Kojo. Using Cross-layer Information to
Improve TCP performance with Vertical Handoffs. InProc.
2nd International Conference on Access Networks (Access-
nets 2007), Aug. 2007.

[9] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Ex-
tension to the Selective Acknowledgment (SACK) Option
for TCP. RFC 2883, July 2000.

[10] W. Hansmann and M. Frank. On Things to Happen During
a TCP Handover. InProc. 28th IEEE Conference on Local
Computer Networks (LCN’03), pages 109–118, Oct. 2003.

[11] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in
IPv6. RFC 3775, June 2004.

[12] J. Korhonen, A. Makela, S. Park, and H. Tschofenig.
Link and Path Characteristic Information Delivery Anal-
ysis. Internet-Draft “draft-korhonen-mobopts-delivery-
analysis-01.txt”, Oct. 2006. Expired.

[13] J. Korhonen, S. Park, J. Zhang, C. Hwang, and P. Saro-
lahti. Link Characteristic Information for IP Mobility Prob-
lem Statement. Internet-Draft “draft-korhonen-mobopts-
link-characteristics-ps-01.txt”, June 2006. Expired.

[14] R. Ludwig and M. Meyer. The Eifel Detection Algorithm
for TCP. RFC 3522, Apr. 2003.

[15] J. Manner and M. Kojo. Mobility Related Terminology. RFC
3753, June 2004.

[16] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgement Options. RFC 2018, Oct. 1996.

[17] Network Simulator ns-2. ns-2.29, 2005.
[18] S. Park, M. Lee, J. Korhonen, and Z. Zhang. Link Charac-

teristic Information for Mobile IP. Internet-Draft, Jan. 2007.
Expired.

[19] P. Sarolahti, J. Korhonen, L. Daniel, and M. Kojo. Us-
ing Quick-Start to Improve TCP Performance with Vertical
Hand-offs. InProc. 31st IEEE Conference on Local Com-
puter Networks (LCN’06), pages 897–904, Nov. 2006.

[20] S. Schütz, L. Eggert, S. Schmid, and M. Brunner. Proto-
col Enhancements for Intermittently Connected Hosts.ACM
Computer Communication Review, 35(2):5–18, July 2005.

[21] S. Schütz, N. Koutsianas, L. Eggert, W. Eddy, Y. Swami,and
K. Le. TCP Response to Lower-Layer Connectivity-Change
Indications. Internet-Draft, Feb. 2008. Work in progress.

[22] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-
TCP: A Reordering-Robust TCP with DSACK. InProc. of
the Eleventh IEEE International Conference on Networking
Protocols (ICNP 2003), 2003.

