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ABSTRACT
The performance of an individual TCP flow with a vertical handoff
has been studied in several papers. However, the effect of a vertical
handoff on multiple TCP flows has been little studied. In this pa-
per we study the behaviour of multiple competing TCP flows with
a vertical handoff. As a part of this study we evaluate the cross-
layer assisted TCP enhancements for a vertical handoff that we had
earlier proposed and analyzed for a single TCP flow. We show
that our algorithms can be adapted for multiple TCP flows with mi-
nor modifications and that they are effective in improving multiple
flow-TCP performance in the presence of a vertical handoff.

Categories and Subject Descriptors
C.2.1 [N]: etwork Architecture and Design; C.2.2 [N]: etwork Pro-
tocols; C.4 [P]: erformance of Systems

General Terms
Performance, Algorithms

Keywords
Vertical Handoff, TCP, Wireless Access Networks, Cross-layer no-
tifications

1. INTRODUCTION
The problem of Transmission Control Protocol (TCP) [25] be-

haviour in the presence of vertical handoffs [22] has grown in sig-
nificance with the proliferation of wireless access networks to con-
nect to the Internet and has been an active research area in recent
years [8, 9, 12–15, 26, 31]. These studies have shown that the po-
tentially significant differences in the bandwidth and/or delay of
the two access links involved in a vertical handoff can affect TCP
performance. The major problems of TCP due to a vertical hand-
off are the unnecessary retransmissions and congestion window
(cwnd) reduction due to spurious RTOs and packet reordering as
well as packet losses due to abrupt changes in the link capacity
and link disconnection. Several cross-layer assisted enhancements
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have been proposed in the literature to mitigate these problems and
to improve TCP performance [7–9, 12–15, 18–20, 26, 29, 30, 32].
These studies have focused on the effect of handoff on a single
TCP flow. However, the effect of competing TCP flows has not
been taken into account in evaluating the various proposed solu-
tions. As multiple parallel TCP flows tend to affect TCP behaviour
in general and more so in a vertical handoff, the resulting change
in TCP behaviour has to be studied and taken into account in the
proposed solutions. Such an approach in evaluating the adaptations
of TCP algorithms in a dynamic environment has been suggested
previously in [2] as a step closer to real-world networks.

In this paper we first study how TCP performance is affected by
a vertical handoff when multiple TCP flows are present and then
describe how the cross-layer assisted TCP enhancements for verti-
cal handoff that we had proposed earlier for a single TCP flow [6,9]
can be easily adapted for the case of multiple TCP flows. We show
that with the inclusion of the number of simultaneous TCP flows in
the cross-layer information, we can easily modify our earlier algo-
rithms to adapt to multiple flow scenarios.

The rest of the paper is organized as follows. Section 2 gives
a overview of the related research work on methods to improve
TCP performance with a vertical handoff. Section 3 describes our
algorithms to adapt TCP to a vertical handoff when multiple TCP
flows are present. Section 4 describes the results of the simulation
experiments to evaluate these algorithms. Section 5 presents the
conclusions of the study.

2. RELATED WORK
We present an overview of the research dealing with the prob-

lems of TCP in the presence of vertical handoffs. The solutions
proposed in these papers are in the context of a single TCP flow. To
the best of our knowledge the behaviour of multiple TCP flows in
a vertical handoff has not been described explicitly in the research
literature. We categorize the related work based on the problems of
vertical handoff they try to solve.

To avoid the problem of spurious retransmission timeouts (RTOs)
that may occur due to a vertical handoff, [19] suggests that upon
receiving a handoff notification, a TCP receiver should send the ac-
knowledgement for a received packet through both the old and new
interfaces and also reset the RTO value to 3 seconds. The use of
ICMP messages to calculate the new RTO value after a handoff has
been proposed in [26] as a solution to the spurious RTO problem.
The TCP-Eifel detection algorithm [21] uses the TCP timestamps
option [5] to detect spurious RTOs. Forward-Retransmission Time-
out (F-RTO) algorithm [28] is a TCP sender-only algorithm that
helps to detect spurious RTOs.

Setting the cwnd appropriately after a handoff is crucial both in
avoiding the congestion-related losses due to a handoff to a lower
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bandwidth-delay product (BDP) link as well as in effectively uti-
lizing the higher BDP of a new link after a handoff. Slow-starting
to find the new cwnd value after a handoff is proposed in [18]. The
use of the Quick-Start algorithm [27] to find the correct sending
rate with the help of routers is proposed in [29]. In the propos-
als [20, 32] the BDP of the end-to-end path after a handoff is cal-
culated as the product of the bottleneck link capacity estimated us-
ing the packet-pair algorithm [17] and the round-trip time (RTT)
and then the cwnd and slow-start threshold (ssthresh) are set to
this BDP value. An explicit cwnd reduction trigger from the mo-
bile node which signals the difference between the BDP values of
the old and new link is proposed in [14]. BDP probing, proposed
in [19], is a technique which initially sends two back-to-back pack-
ets just after a handoff to estimate the capacity of the bottleneck
link and then sends the data packets at the rate of the estimated
capacity to find the available bandwidth. A receiver-based mech-
anism proposed in [12] addresses the problem of abrupt change in
link capacity due to a vertical handoff. When an impending handoff
is detected, the TCP receiver sends the receiver advertised window
(rwnd) based on the BDP of the new network and this rwnd will be
effective once the mobility registration is complete. Overbuffering
is suggested in [13] to reduce the effects of BDP change due to a
handoff.

To mitigate the problems arising from packet reordering due to a
vertical handoff, a nodupack scheme is proposed in [14] and it sup-
presses the transmission of dupacks during a handoff. However,
this may delay the loss recovery if the reordering occurs due to a
handoff. An RTT-equalization scheme is proposed in [26] which
sends the acknowledgements for the packets received from the fast
interface through the slow interface and vice versa. DSACK [11],
an extension of SACK in which the receiver reports to the sender
the receipt of a duplicate segment, can be used to detect packet re-
ordering and to undo the consequent congestion control actions [3].

To minimize the unused connection time after a handoff, a TCP
retransmission trigger that causes TCP to attempt a retransmis-
sion when the connectivity is restored after a handoff is proposed
in [30].

A detailed account of the research work in this area can be found
in Chapter 5 of [6].

3. TCP ENHANCEMENTS FOR MULTIPLE
FLOWS

In this section we present a brief overview of the problems of
TCP in vertical handoffs and describe the modifications we propose
in this paper to our earlier algorithms [6,7,9] in order to adapt them
for handoffs in the context of multiple TCP flows. Our algorithms
make use of the cross-layer information regarding the occurrence of
a handoff, the bandwidth and delay of the access links involved in
the handoff and the number of TCP flows undergoing the handoff.
Our modelling assumption is that the mobile node can send the
above information to the TCP sender at the correspondent node
along with the mobility signalling.

3.1 Spurious RTOs
Spurious RTOs occur when a make-before-break handoff [22]

occurs from a low-latency link to a high-latency link. After the
handoff, the acknowledgments (ACKs) will be delayed due to the
higher delay of the new link. TCP retransmission timer expires be-
fore the arrival of the ACKs through the new link due to the small
RTO value calculated on the basis of the old path. This spurious
RTO will cause unnecessary retransmission of packets and reduc-
tion in cwnd and ssthresh. Unnecessary retransmissions waste the

bandwidth and reduction in cwnd and ssthresh reduce the sending
rate, resulting in performance degradation.

In order to avoid the occurrence of spurious RTOs we calculate
the minimum RTO (minrto) based on the new access link delay and
update the RTO timer immediately so that the new minrto comes
into effect. As a result any change in the delay of the end-to-end
path will be reflected better in the RTO calculation. As the minrto
calculation is based on the access link delay alone, the RTT vari-
ables are initialized as in RFC 2988 upon the arrival of the ACK
for the data sent through the new access link. This enables the RTO
to adapt to the end-to-end RTT quickly. No modification to this
algorithm is needed for multiple TCP flow scenarios. Due to space
limitations this algorithm is not given here and the reader is referred
to [6, 9] for details.

3.2 Packet Losses due to Congestion
Packet losses can occur when there is a decrease in BDP after a

handoff. When a handoff occurs from a high-bandwidth link to a
low-bandwidth link, significant packet losses can occur even when
the BDP of the two links remains the same.

We first introduce the algorithm used to avoid the packet losses
due to a decrease in BDP in the case of a single TCP flow and then
describe the modification to this algorithm for the case of multi-
ple TCP flows which is shown in Figure 1. We set the cwnd and
ssthresh to the BDP of the new access link if the FlightSize at the
time of handoff is greater than twice the BDP of the new access link
(or 1.5 times the BDP of the new access link in case the bandwidths
of the old and new link differ significantly). A detailed discussion
of the rationale of this algorithm can be found in [6,9]. When there
are multiple flows sharing a bottleneck access link it is no longer
appropriate to set the cwnd of each TCP flow to the BDP of the
new link. Accordingly the cwnd and ssthresh) is set to the BDP
of the new link divided by the number of concurrent flows that use
the link at the time of handoff. This value corresponds to a single
flow’s share of the bandwidth when a number of flows share the
bottleneck link. Here we make the assumption is that the bottle-
neck link is the last/first hop wireless access link. This assumption
is justifiable as the bandwidth of the wired links in an end-to-end
path is usually much higher than that of the wireless access links at
its end points.

When a handoff notification arrives
If ((TCP not in RTO recovery)

If (BWoldlink >= 8 ∗ BWnewlink)
If (FlightSize > 1.5 ∗ (BDPnewlink/N))
/* N refers to the number of flows */

cwnd_reduction = 1
Else if ( BWoldlink < 8 ∗ BWnewlink)

If (FlightSize > 2 ∗ (BDPnewlink/N)
cwnd_reduction = 1

If (cwnd_reduction == 1)
cwnd = max(2,BDPnewlink/N)
ssthresh = cwnd
cwnd_reduced = 1

Figure 1: Algorithm to reduce congestion-related packet losses
for multiple flows. Adaptation to multiple flows shown in bold.

Figures 2 and 3 describe our algorithms to reduce the unused
connection time and to combat the problems arising from packet re-
ordering in a vertical handoff in the setting of multiple TCP flows.
In these algorithms also we set the cwnd and ssthresh in the same
manner based on the number of simultaneous TCP flows through
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the bottleneck link. This is the only modification necessary to adapt
our algorithms designed for a single TCP flow to the case of multi-
ple TCP flows in the presence of a vertical handoff. As the informa-
tion about the number of flows can be easily included in the handoff
notifications, our algorithms are easy to implement in practice.

3.3 Unused Connection Time and
ssthresh Reduction

When a handoff notification arrives:
If (TCP in RTO recovery)

Retransmit the first unacknowledged packet
Set ssthresh to max(2,BDPnewlink/N)

/* N refers to the number of flows */
If there is a significant change in delay

Initialize RTT variables as for a new connection
When ACK for new data arrives

Update RTT variables

Figure 2: Algorithm to reduce the unused connection time and
to set ssthresh. Adaptation to multiple flows shown in bold.

Figure 2 gives our algorithm to reduce the unused connection
time and to set the ssthresh in a break-before-make handoff. When
a break-before-make handoff occurs, the end-to-end path between
the mobile node and correspondent node is broken and the con-
nectivity resumes only after the handoff is completed resulting in
packet losses. If the disconnection period is greater than the current
RTO value, the retransmission timer expires. The TCP sender re-
transmits the first unacknowledged segment and doubles the RTO
value. For each subsequent timer expiration for the same segment,
TCP doubles the RTO value again [24]. When the end-to-end con-
nection is up, the TCP sender needs to wait until the retransmission
timer expires again before attempting another retransmission. This
unused connection time can be up to one minute [24] depending
on the disconnection length and the next scheduled RTO and it in-
creases the recovery time of the lost packets. If more than one time-
out has occurred, i.e., a retransmission is considered to be lost, the
ssthresh value is further reduced in some implementations resulting
in inefficient recovery. By retransmitting the first unacknowledged
segment immediately if the TCP sender is in RTO recovery when
the handoff notification arrives and setting the ssthresh to the BDP
of the new link scaled by the number of flows, our algorithm given
in Figure 2 is able to mitigate the problems due to a long discon-
nection in a break-before-make handoff.

3.4 Packet Reordering
Packet reordering is a problem that TCP faces when there is a

significant reduction in delay after a make-before-break handoff.
The packets sent through a low-delay link after the handoff may
overtake the packets transmitted through the high-delay link before
the handoff and this causes packet reordering which generates du-
packs. If the TCP sender receives a dupthresh number of dupacks
(typically 3) it enters fast recovery, halves the ssthresh and cwnd
and continues in congestion avoidance. The retransmission and
the reduction in ssthresh and cwnd are unnecessary as the dupacks
which arrive are due to packet reordering and not due to congestion.

We briefly describe the main idea behind the algorithm given
in Figure 3 and refer the reader to [7] for its detailed description.
If the bandwidth of the new access link is greater than dupthresh
times the bandwidth of the old access link, there is a possibility of
packet reordering leading to false fast retransmit. If this condition
arises, a new dupthresh value is calculated based on the ratio of

the bandwidth of the two access links. In fast retransmit, the TCP
sender saves the previous cwnd value if there is a possibility of
reordering. In fast recovery, the TCP sender sends a new segment
for every arriving dupack until all the segments transmitted before
the handoff are acknowledged or the number of dupacks exceeds
the dupthresh. In the latter case TCP returns to the normal fast
recovery [10]. If the retransmission is identified as unnecessary
using DSACK information, the cwnd and ssthresh are set to the
BDP of the new access link scaled by the number of flows.

When a handoff notification arrives with the
information regarding the old and the new access links

/* Congestion likely due to bandwidth or BDP decrease ? */
If (FlightSize > 2 · (BDPnewlink/N))

Set cwnd_reduction to 1
If ((cwnd_reduction = 1) AND

(BDPoldlink > BDPnewlink ) AND
(BWnewlink < 8 · BWoldlink))

Set cwnd and ssthresh to max(2, (BDPnewlink/N))
/* N refers to the number of flows */

If (TCP is not already in Loss recovery)
/* False fast retransmit likely due to reordering ? */
If ((BWnewlink > 3 · BWoldlink) AND

(cwnd_reduction = 0))
set reordering_flag to 1
dupthresh = max(BWnewlink

BWoldlink
, 3)

In Fast retransmit:
Retransmit the first unACKed segment
If (reordering_flag = 1)

Save cwnd in cwnd_prev
In Fast Recovery:

If (reordering_flag = 1)
Send a new segment for every dupack
If (number of dupacks > dupthresh)

Set return_fastrecovery to 1
Return to the normal fast recovery

On the arrival of a new ACK indicating that
all packets sent before handoff are ACKed:

Reset cwnd_reduction
If ((DSACK indicates that the retransmission

after the handoff was unnecessary) AND
(return_fastrecovery = 0) AND
(cwnd < min(cwnd_prev, (BDPnewlink)/N))

Set cwnd to min(cwnd_prev, (BDPnewlink/N)
Set ssthresh to max(cwnd_prev, (BDPnewlink/N)

Reset reordering_flag, return_fastrecovery
Reset dupthresh to 3
If (there is a significant change in delay)

Update the RTT variables

Figure 3: Algorithm to combat the problems arising from
packet reordering in a vertical handoff. Adaptation to multi-
ple flows shown in bold.

3.5 Slow RTO convergence
After a handoff, the RTO will converge to the RTT of the new

path very slowly. One reason for this is that the formula for up-
dating the smoothed RTT (SRTT) value at the TCP sender gives
a much smaller weight to the current RTT sample compared to
that of the previous SRTT value. Another reason is that the RTT
variables are updated only once in an RTT and not for each ACK
received [24]. In order to quickly converge to the RTO value corre-
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sponding to the new path, we initialize the RTT variables as in RFC
2988 if the old and the new RTT values differ by a factor of two or
more and the new RTT value is greater than minrto. No modifica-
tion to this algorithm is needed for multiple TCP flow scenarios.
Due to space limitations we do not give this algorithm here and the
reader refer to to [6, 9].

4. SIMULATION RESULTS
We use the ns-2 network simulator to model the behaviour of

TCP in a vertical handoff. This section describes the simulation
experiments and our results obtained. We first discuss the simu-
lation setup, and then move on to investigating different types of
vertical handoff scenarios.

4.1 Simulation Setup
In the simulation model the mobile node is capable of using both

the access links involved in a vertical handoff. Both access links
have dedicated base stations that are connected to a common wire-
less access router by 100 Mbps links. The router has a 100 Mbps
connection to a server (correspondent node) in the fixed network.
The propagation delay over each of the fixed links is 2 ms. Un-
less otherwise stated, the router buffer size of each link is set to
max(BDP<link>, 5) packets. We consider bulk TCP flows from
the correspondent node to the mobile node. A detailed description
of the simulation environment is given in [6, 9].

The baseline TCP used in the experiments is TCP SACK [4]
and is referred to as regular TCP. TCP SACK with the enhance-
ments we had proposed earlier [6, 9] is referred to as Enhanced-
TCPv0 (ETCPv0) and the TCP SACK in conjunction with the al-
gorithms described in Section 3 is referred to as Enhanced-TCPv1
(ETCPv1). The TCP packet size is 1500 bytes including the TCP/IP
headers.

In our experiments a 20-second interval is chosen to cover all the
phases of a TCP connection and a handoff can occur uniformly in
any one of the 200 instances at 100 ms intervals. The duration of
each test run includes the completion of the handoff occurring in
the 20-second interval. No link errors are modelled as we assume
that the packet losses are solely due to congestion.

In order to study the behaviour of TCP with vertical handoff we
focus on the TCP behaviour immediately after a handoff. As a per-
formance metric, we calculate the time taken to transfer (to receive
the acknowledgment) a specific number of packets. This time is
calculated with respect to the slowest flow. In comparing the per-
formance of the enhanced TCP with the regular TCP, we use the
median value of the time taken to transfer 100 packets after a hand-
off. In all the performance graphs given in this paper, the x-axis
shows the number of flows and the y-axis shows the lower quartile,
median, and upper quartile of the time (in seconds) to transfer 100
packets after the handoff.

We are categorizing our experiments into two classes, (i) hand-
off from a fast link to a slow link and (ii) handoff from a slow
link to a fast link. We have chosen the following four sets of
bandwidth and delay combinations to reflect the situations arising
in handoff involving access networks such as EGPRS [23], HS-
DPA [1], WiMAX [33] and WLAN [16]. A rough range of the
bandwidth and propagation delay (one-way) of the access networks
such as EGPRS (200 Kbps/300 ms), HSDPA (700 Kbps/75 ms,
2000 Kbps/50 ms, 6000 Kbps/50 ms), WiMax (2000 Kbps/50 ms,
11000 Kbps/20 ms) and WLAN (11000 Kbps/10 ms, 54000 Kbps/2
ms) is used in our experiments. In the first two experiments, the
BDP of the access links held constant while the BDP of the access
links in the second experiment is higher. In the second class of
experiments the BDP of the two access links involved in a hand-

off differ. Here we perform two sets of experiments in which the
BDP of the access links in the second set is higher than that in the
first set. In each of the experiments we study the behaviour of TCP
flows for the case of one, two and four long, simultaneous TCP
flows.

4.2 Handoff from a Fast link to a Slow link
In this section we describe a set of experiments where a handoff

occurs from a fast link to a slow link. As the problems that oc-
cur with a make-before-break handoff differ from that of a break-
before-make handoff we discuss the two cases separately.

4.2.1 Make-Before-Break Handoff
The main problems of TCP in a make-before-break handoff from

a fast link to a slow link are the occurrence of spurious RTOs and
unnecessary retransmissions associated with them in addition to the
packet drops due to a decrease in bandwidth. Our experiments de-
scribed here show that the algorithms designed to avoid the spu-
rious RTOs and to reduce the packet losses that are described in
Section 3 are effective and improve the performance of TCP.

First we consider a handoff occurring between same BDP links
even though the bandwidth and delay of the new access link dif-
fers considerably from that of the old link. The BDP of both ac-
cess links is 10 packets. The problems in this case are the occur-
rence spurious RTOs and unnecessary retransmissions associated
with them in addition to the packet drops due to a decrease in band-
width.
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Figure 4: Time taken to transfer 100 packets after a
make-before-break handoff from a 6400Kbps/9ms link to a
200Kbps/300 ms link

Figure 4 shows the time taken by regular TCP, ETCPv0 and
ETCPv1 to transfer 100 packets after a make-before-break hand-
off from a 6400 Kbps/9 ms link to a 200 Kbps/300 ms link. For a
single TCP flow ETCPv1 and ETCPv0 show a 40 % reduction in
transfer time compared to that of regular TCP. In the case of two
flows a similar reduction in transfer time is seen whereas in the
case of four flows the performance of regular TCP and ETCPv1
are nearly the same. The reason for this is that with the increase
in the number of flows there is a consequent decrease in the size of
the cwnd of each flow. As a result the typical problems of TCP in
vertical handoff due to spurious RTOs and cwnd reduction do not
have a significant impact on TCP performance. In the case of four
flows, we can see that ETCPv0 performs worse than both regular
TCP and ETCPv1 as ETCPv0 sets the cwnd to the BDP of the new
link resulting in an aggressive behaviour leading to packet losses.
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Figure 5: Time taken to transfer 100 packets after a
make-before-break handoff from a 54000Kbps/2ms link to a
2000Kbps/50 ms link
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Figure 6: Time taken to transfer 100 packets after a
make before-break handoff from a 11000Kbps/10ms link to a
700Kbps/75ms link

In this category of same BDP access link handoffs we next de-
scribe a handoff from a 54000 Kbps/2 ms link to a 2000 Kbps/50
ms link. Here the BDP of the links is set to a higher value (18 pack-
ets) and a higher bandwidth and lower delay compared to the cor-
responding values in experiment described above. Figure 5 shows
that in the case of a single flow ETCPv1 and ETCPv0 reduce the
transfer time for 100 packets after a handoff by about 40 % com-
pared to regular TCP. We can also see from this figure that for two
and four flows ETCPv1 still shows up to 30 % improvement in
transfer time over regular TCP. With the increase in BDP, the cwnd
for each flow increases resulting in packet losses that occur due to
a make-before-break handoff. ETCPv1 improves the performance
over regular TCP as it avoids packet losses due to spurious RTOs
and cwnd reduction.

In the second class of experiments, the BDP of the access links
differ. We have two sets of experiments in this class, namely, a
handoff from a 11000 Kbps/10 ms link to a 700 Kbps/75 ms link
(BDP of 18 and 9 packets respectively) and a handoff from a 54000
Kbps/4 ms link to a 6000 Kbps/50 ms link (BDP of 50 and 38
packets respectively).
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Figure 7: Time taken to transfer 100 packets after a
make-before-break handoff from a 54000Kbps/4ms link to a
6000Kbps/50ms link

The main problem of regular TCP in a make-before-break hand-
off from a 11000 Kbps/10 ms link to a 700 Kbps/75 ms link is the
large number of packet losses due to the reduction in BDP (BDP
reduction from 18 packets to 9 packets) and also due to large de-
crease (about 15 times) in bandwidth. RTO recovery is needed to
recover the lost packets and more losses may occur before regular
TCP adapts itself to the cwnd of the new path. On the other hand,
ETCPv1 sets the cwnd based on the BDP of the new link and the
number of flows and is able to avoid the packet losses. Figure 6
illustrates the transfer time taken for regular TCP and ETCPs in
this scenario. In the case of a single TCP flow, with ETCPv1 and
ETCPv0, there is approximately 60 % reduction in transfer time of
regular TCP.

When there are two TCP flows, packet losses lead to RTO re-
covery in the case of regular TCP but there are no packet losses
for ETCPv1. The reduction in transfer time for ETCPv1 is around
50 % as the available bandwidth for a single flow is halved. When
the number of flows increases to four, the available bandwidth share
of the flows decreases. Regular TCP suffers packets losses and
needs RTO recovery, while with ETCPv1 there are no packet losses
as it sets the cwnd and ssthresh to the new link BDP scaled by the
number of flows. ETCPv1 is able to reduce the transfer time by
about 50 % compared to regular TCP. Figure 6 shows that ETCPv0
reduces the transfer time of regular TCP by about 35 % but there
are still packet losses as it sets the cwnd and ssthresh to the new
link BDP which is larger than the BDP corresponding to the flow’s
share of bandwidth when there are four simultaneous flows.

In a make-before-break handoff from a 54000 Kbps/4 ms link
to a 6000 Kbps/50 ms link, both the access links have sufficiently
high BDP values of 50 packets and 38 packets respectively. Figure
7 shows that ETCPv1 shows a 20-40 % reduction in the transfer
time compared to the regular TCP even when there are four simul-
taneous TCP flows. This significant improvement in performance
shows the effectiveness of our algorithms when the cwnd is suffi-
ciently large.

4.2.2 Break-Before-Make Handoff
Next we describe the experiments involving a break-before-make

handoff from a fast link to a slow link. Here we carry out the same
set of experiments as in the case of make-before-break handoff de-
scribed earlier.
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Figure 8: Time taken to transfer 100 packets after a
break-before-make handoff from a 6400Kbps/9ms link to a
200Kbps/300ms link
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Figure 9: Time taken to transfer 100 packets after a break-
before-make handoff from a 54000 Kbps/2ms link to a 2000
Kbps/50 ms link, disconnection period 1s

A break-before-make handoff results in packet losses and un-
used connection time. The algorithm in Figure 2 retransmits the
first unacknowledged packet immediately if TCP is already in RTO
recovery when a handoff notification arrives and this helps to utilize
the connection as soon as the new access link is up after a handoff.
The proper setting of the ssthresh by the algorithm helps in avoid-
ing unnecessary reduction of ssthresh due to repeated timeouts.

Figure 8 shows the time taken for transferring 100 packets by the
three TCP versions in a break-before-make handoff from a 6400
Kbps/9 ms link to a 200 Kbps/300 ms link. We can see that in the
case of a single flow both ETCPv0 and ETCPv1 reduce the trans-
fer time by about 40 % compared to regular TCP. As the number
of flows increases to four, the cwnd available for a single flow de-
creases and this reduces the number of packet losses due to a dis-
connection . In the case of four flows, we observe that ETCPv0
incurs additional losses resulting in increased transfer time com-
pared to regular TCP and ETCPv1.

The marked improvement in the performance of the ETCPv1
over the regular TCP in a break-before-make handoff from a 54000
Kbps/2 ms link to a 2000 Kbps/50 ms link can be clearly seen from
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Figure 10: Time taken to transfer 100 packets after a break-
before-make handoff from a 11000 Kbps/10ms link to a 700
Kbps/75 ms link, disconnection period 1s
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Figure 11: Time taken to transfer 100 packets after a break-
before-make handoff from a 54000 Kbps/4ms link to a 6000
Kbps/50 ms link, disconnection period 1s

the Figure 9. Figure 10 shows that for all the flows, ETCPv1 re-
duces the transfer time by about 50 % compared to regular TCP.
Figure 11 shows that ETCPv1 is effective in a break-before-make
handoff from a 54000 Kbps/4 ms link to a 6000 Kbps/50 ms link.
As the cwnd is sufficiently large ETCPv1 performs better than reg-
ular TCP when there are four simultaneous TCP flows. We can also
see from this figure that there is about 20-40 % reduction in transfer
time with ETCPv1 compared to regular TCP for all the flows.

4.3 Handoff from a Slow link to a Fast link
In this section we describe a set of experiments where both make-

before-break and break-before-make handoffs occur from a slow
link to a fast link.

4.3.1 Make-Before-Break Handoff
Packet reordering is the main problem of TCP in a make-before-

break handoff from a slow link to a fast link. After a handoff, pack-
ets through the fast new link may arrive at the receiver sooner than
the packets sent before the handoff through the slow old link re-
sulting in packet reordering. Our algorithm given in Figure 3 is
designed to mitigate the problems arising from packet reordering.
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Figure 12: Time taken to transfer 100 packets after a
make-before-break handoff from a 200Kbps/300ms link to a
6400Kbps/9ms link
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Figure 13: Time taken to transfer 100 packets after a
make-before-break handoff from a 2000Kbps/50ms link to a
54000Kbps/2ms link

Figure 12 shows the results of a make-before-break handoff from
a 200 Kbps/300 ms link to a 6400 Kbps/9 ms link. Even though
the transfer time of ETCPv1 and TCP are quite the same, we have
observed in our experiments that ETCPv1 reduces the unnecessary
retransmissions caused by packet reordering.

Figure 13 shows the results for a make-before-break handoff
from a 2000 Kbps/50 ms link to a 54000 Kbps/2 ms link. In the
cases of one and two TCP flows our algorithm in Figure 3 reduces
the transfer time taken by regular TCP by about 30 %. In the case of
four flows, the cwnd for a single flow is relatively small and the un-
necessary retransmissions and cwnd reduction due packet reorder-
ing have only a minor effect on TCP performance. We can see from
Figure 13 that when there are four simultaneous TCP flows sharing
the link at the time of handoff, ETCPv1 and regular TCP have com-
parable performance. In our experiments we observed that ETCPv1
is effective in reducing the unnecessary retransmissions caused by
packet reordering.

Figure 14 shows the results of the transfer time taken by regular
TCP and ETCPv1 in a handoff from a 700 Kbps/75 ms link to a
11000 Kbps/10 ms link. Here the handoff is from a low BDP link
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Figure 14: Time taken to transfer 100 packets after
make-before-break handoff from a 700Kbps/75ms link to a
11000Kbps/10ms link
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Figure 15: Time taken to transfer 500 packets after make-
before-break handoff from a 6000Kbps/50ms link to a
54000Kbps/4ms link

to a high BDP link. ETCPv1 shows an improved performance,
more than 50 % reduction in transfer time of regular TCP for all
the flows.

Fig 15 shows the time taken to transfer 500 packets after a make-
before-break handoff from a 6000 Kbps/50 ms link to a 54000
Kbps/9 ms link. Packet reordering is again the main problem of
TCP in this scenario. ETCPv1 utilizes the new high bandwidth
link effectively and is able to transfer 300-400 packets while wait-
ing for the packets sent earlier through the old link. Here we have
taken the time to transfer 500 packets after a handoff which is an
adequate time in this scenario for TCP to recover from the effects
of a handoff. ETCPv1 is able to reduce the transfer time of regular
TCP by about 30 % in this scenario.

4.3.2 Break-Before-Make Handoff
In an break-before-make handoff, our algorithm in Figure 2 im-

mediately retransmits the lost segment and thereby helps to utilize
the fast link after the handoff.

As shown in Figure 16 for a break-before-make handoff from a
200 Kbps/300 ms link to a 6400 Kbps/9 ms link the transfer time
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Figure 16: Time taken to transfer 100 packets after a
break-before-make handoff from a 200Kbps/300ms link to a
6400Kbps/9mslink, disconnection period 1s
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Figure 17: Time taken to transfer 100 packets after a break-
before-make handoff from a 2000Kbps/50ms link to a 54000
Kbps/2ms link, disconnection period 1s

of ETCPv1 and regular TCP are equal for all the flows. This is
because the RTO value of the old access link (2.5 seconds to 3 sec-
onds) is larger than the disconnection period of one second and a
timeout will not occur during the disconnection time. Therefore
ETCPv1 and ETCPv0 will not enter the algorithm given in Figure
2. When a disconnection period is four seconds or longer the al-
gorithm in Figure 2 will be entered and consequently there will be
significant improvement arising from its use.

We can observe from Figure 17 that ETCPv1 shows nearly 50 %
reduction in transfer time over regular TCP when a break-before-
make handoff occurs from a 2000 Kbps/50 ms link to a 54000
Kbps/2 ms link. The reason for this improvement is due to abil-
ity of ETCPv1 to utilize the high bandwidth link immediately after
a handoff by using the algorithm in Figure 2 whereas regular TCP
waits for the next RTO to start the transmission after the handoff.
We can see from Figure 18 that in a handoff from a 700 Kbps/75
ms link to a 11000 Kbps/10 ms link ETCPv1 shows 50 % reduction
in transfer time over regular TCP for all the flows.

Figure 19 shows the time taken for transferring 500 packets after
a break-before-make handoff from a 6000 Kbps/50 ms link to a
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Figure 18: Time taken to transfer 100 packets after a
break-before-make handoff from a 700Kbps/75ms link to a
11000Kbps/10ms link, disconnection period 1s
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Figure 19: Time taken to transfer 500 packets after a
break-before-make handoff from a 6000Kbps/50ms link to a
54000Kbps/4ms link, disconnection period 1s

54000 Kbps/4 ms link. We can see that ETCPv1 obtains over 50 %
reduction in transfer time over regular TCP for all the flows we
consider in our experiments. The reason for the improvement is the
same as given in the previous paragraph.

5. CONCLUSIONS
In this paper we study the behaviour of multiple TCP flows in the

presence of a vertical handoff. Through extensive simulations we
show that the proposed cross-layer assisted algorithms, which uti-
lize the information about the number of simultaneous TCP flows
and the bandwidth and delay of the access links, are effective in
avoiding the problems of TCP due to a vertical handoff and im-
prove TCP performance. The problems of TCP in a vertical hand-
off due to the number of unnecessary retransmissions and packet
losses are aggravated with the increase in the size of the cwnd. With
the increase in the number of TCP flows the size of the cwnd de-
creases roughly in inverse proportion to the number of TCP flows
that share the bottleneck access link. Consequently, as the num-
ber of simultaneous TCP flows increases, the typical problems of
TCP due to spurious RTOs, packet reordering and cwnd reduction
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arising from a vertical handoff tend to have diminishing impact on
TCP performance, in particular if the cwnd is small. However, if
the cwnd is sufficiently large the algorithms proposed in this paper
will be effective for multiple TCP flows in various vertical handoff
scenarios.
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