]. 2 Fast Discovery of Association Rules

Rakesh Agrawal
IBM Almaden Research Center

Heikki Mannila
University of Helsinki

Ramakrishnan Srikant
IBM Almaden Research Center

Hannu Toivonen
University of Helsinki

A. Inkeri Verkamo
-University of Helsinki

Abstract

Association rules are statements of the form “98% of customers that purchase
tires and automobile accessories also get automotive services.” We consider
the problem of discovering association rules between items in large databases.
We present two new algorithms for solving this problem. Experiments with
synthetic data show that these algorithms outperform previous algorithms by
factors ranging from three for small problems to more than an order of mag-
nitude for large problems. We show how the best features of the two proposed
algorithms can be combined into a hybrid algorithm. Scale-up experiments
show that the hybrid algorithm scales linearly with the number of transactions
and that it has excellent scale-up properties with respect to the transaction
size and the number of items in the database. We also give simple information-
theoretic lower bounds for the problem of finding association rules, and show
that sampling can be in some cases an efficient way of finding such rules.

12.1 ‘Association Rules

Recently, Agrawal, Imielinski, and Swami (1993) introduced a class of
regularities, association rules, and gave an algorithm for finding such
rules. An association rule is an expression X = Y, where X and Y are
sets of items. The intuitive meaning of such a rule is that transactions of
the database which contain X tend to contain Y. An example of such a

308 Agrawal et al.

rule might be that 98% of customers that purchase tires and automobile
accessories also have automotive services carried out.

Application domains for association rules range from decision support
to telecommunications alarm diagnosis and prediction. The prototypical
application is in analysis of sales data. Bar-code technology has made
it possible for retail organizations to collect and store massive amounts
of sales data, referred to as basket data. A record in such data typically
consists of the transaction date and the items bought in the transaction.
Finding association rules from such basket data is valuable for cross-
marketing and attached mailing applications. Other applications include
catalog design, add-on sales, store layout, and customer segmentation
based on buying patterns.

The following is a formal statement of the problem (Agrawal et al.
1993): Let T = {i1,12,...,4m} be a set of literals, called items. Let D
be a set of transactions, where each transaction 7' is an itemset such
that T C Z. (In other words, T = {i1,%2,...,im} is a set of attributes
over the binary domain {0,1}. A tuple T of the database D is repre-
sented by identifying the attributes with value 1.) Associated with each
transaction is a unique identifier, called its TID. A set of items X C T is
called an itemset. We say that a transaction T' contains an itemset X, if
X CT. An association rule is an implication of the form X = Y, where
XcZ,YCZ,and XNY = 0. Therule X = Y holds in the transac-
tion set D with confidence c if ¢% of transactions in D that contain X
also contain Y. The rule X = Y has support s in the transaction set D
if s% of transactions in D contain X UY. Negatives, or missing items;
are not considered of interest in this approach. Our rules are somewhat
more general than in (Agrawal et al. 1993) in that we allow a consequent
to have more than one item. ‘

Given g set of transactions D, the problem of mining association rules
is to generate all association rules that have certain user-specified min-
imum support (called minsup) and confidence (called minconf). Note
that we are interested in discovering all rules rather than verifying
whether a particular rule holds. Verification has the limitation that
we may miss surprising rules and changing trends. Our discussion is
neutral with respect to the representation of D. For example, D could
be a data file, a relational table, or the result of a relational expression.

This article is the result of research undertaken independently as part
of the Quest project at IBM Almaden Research Center (Agrawal and

Fast Discovery of Association Rules 309

Srikant 1994) and research at the University of Helsinki (Mannila et al.
1994).

12.1.1 Related Work

Related, but not directly applicable, work includes the induction of clas-
sification rules (Breiman et al. 1984; Quinlan 1993), discovery of causal
rules (Spiegelhalter et al.1993), learning of logical definitions (Muggle-
ton and Feng 1992), fitting of functions to data (Langley et al. 1987),
and clustering (Cheeseman et al. 1988; Fisher 1987). The closest work
in the machine learning literature is the KID3 algorithm presented in
(Piatetsky-Shapiro 1991). If used for finding all association rules, this
algorithm will make as many passes over the data as the number of
combinations of items in the antecedent, which is exponentially large.
Related work in the database literature is the work on inferring func-
tional dependencies from data (Mannila and Réiha 1992; Mannila and
Raihé 1994). '

There has been work on quantifying the “usefulness” or “interesting-
ness” of a rule (Piatetsky-Shapiro 1991; Piatetsky-Shapiro and Matheus
1994). What is useful or interesting is often application-dependent. The
need for a human in the loop and providing tools to allow human guid-
ance of the rule discovery process has been articulated, for example, in
(Brachman et al. 1993) and (Klemettinen et al. 1994). We do not discuss
these issues in this chapter, except to point out that these are necessary
features of & rule discovery system that may use our algorithms as the
engine of the discovery process.

12.1.2 Chapter Organization

The rest of this chapter is organized in the following manner. In Sec-
tion 12.2, we describe new algorithms, Apriori and AprioriTid, for dis-
covering all itemsets that have at least minsup support. We give an
algorithm for using the itemsets to generate association rules in Sec-
tion 12.3. ' : ‘

In Section 12.4, we provide empirical results of the performance and
compare the Apriori and AprioriTid algorithms against the AIS (Agrawal
et al. 1993) and SETM (Houtsme and Swami 1993) algorithms, the two
other algorithms available in the literature. We describe how the Apri-
ori and AprioriTid algorithms can be combined .into a hybrid algorithm,

310 Agrawal et al.

AprioriHybrid, and demonstrate the scale-up properties of this algo-
rithm. \

We study the theoretical properties of the problem of finding associ-
ation rules in Section 12.5. Section 12.6 is a short conclusion.

12.2 Discovering Large Itemsets

The problem of discovering all association rules of sufficient support and
confidence can be decomposed into two subproblems (Agrawal et al.
1993):

1. Find all combinations of items that have transaction support above
minimum support. Call those combinations large itemsets and all
other combinations small itemsets. We describe new algorithms,
Apriori and AprioriTid, for solving this problem.

2. Use the large itemsets to generate the desired rules. We provide
an algorithm for this problem in Section 12.3. The general idea
is that if, say, ABCD and AB are large itemsets, then we can
determine if the rule AB = CD holds by computing the ratio r
= support(ABCD)/support(AB). Only if r > minconf, then the
rule holds. Note that the rule will have minimum support because
ABCD is large. '

It is easy to see that this two-step approach is in a sense optimal: the
problem of finding large itemsets can be reduced to the problem of find-
ing all association rules that hold with a given confidence. Namely, if
we are given a set of transactions D, we can find the large itemsets
by adding an extra item j to each transaction in D and then finding
the association rules that have j on the right-hand side and hold with
confidence 100%.

The algorithms for discovering all large itemsets make multiple passes
over the data. In each pass, we start with a seed set of large itemsets
and use the seed set for generating new potentially large itemsets, called
candidate itemsets. We find the support count for these candidate item-
sets during the pass over the data. At the end of the pass, we determine
which of the candidate itemsets are actually large, and they become
the seed for the next pass. This process continues until no new large
itemsets are found. In the first pass, we count the support of individual

Fast Discovery of Association Rules 311

items and determine which of them are large. This could be considered
breadth-first search in the space of potentially large itemsets.

In both the AIS (Agrawal et al. 1993) and SETM (Houtsma and Swami
1993) algorithms candidate itemsets are generated on-the-fly during the
database pass. Specifically, after reading a transaction, it is determined
which of the itemsets found large in the previous pass are present in the
transaction. New candidate itemsets are generated by extending these
large itemsets with other items in the transaction. However, as we will
see, this approach results in unnecessarily generating and counting too
many candidate itemsets that turn out to be small.

On the other hand, the Apriori and AprioriTid algorithms generate
the candidate itemsets to be counted in a pass by using only the itemsets
found large in the previous pass—without considering the transactions in
the database. The basic combinatorial property used is that any subset
of a large itemset must be large. Therefore, the candidate itemsets
having k items can be generated by joining large itemsets having k—1
items, and deleting those that contain any subset that is not large. This
procedure results in generation of a much smaller number of candidate
itemsets, i.e., in effect pruning the search space.

The AprioriTid algorithm has the additional property that the data-
base is not used at all for counting the support of candidate itemsets
after the first pass. Rather, an encoding of the candidate itemsets used
in the previous pass is employed for this purpose. (This encoding tells
s what candidates were present in which transactions.) In later passes,
the size of this encoding can become much smaller than the database,
thus saving much reading effort.

Notation Assume for simplicity that items in transactions and item-
sets are kept sorted in their lexicographic order. We call the number of
items in an itemset its size, and call an itemset of size k a k-itemset. We
use the notation ¢[1] - ¢[2] - ... - c[k] to represent a k-itemset c consisting
of items ¢[1],¢[2], . .. c[k], where c[1] < ¢[2] < ... < c[k]. Associated with
each itemset is a count field to store the support for this itemset.

We summarize in Table 12.1 the notation used in the algorithms. The
set Cj is used by AprioriTid and will be further discussed when we
describe this algorithm.

312 Agrawal et al.

Table 12.1
Notation.
k-itemset | An itemset having k items.
L Set of large k-itemsets (those with minimum support).

Each member of this set has two fields:

: i) itemset and ii) support count. °]

Ck Set of candidate k-itemsets (potentially large itemsets).
Each member of this set has two fields:

i) itemset and ii) support count.

Cy Set of candidate k-itemsets when the TIDs of the generating
| transactions are kept associated with the candidates.

1) L = {large l-itemsets};

2) for (k=2; Ly~1 # 0; k++) do begin

3) Ci = apriori-gen(Ls~1); // New candidates
4) forall transactions ¢t € D do begin

5) C; = subset(Cy, t); // Candidates contained in ¢
6) forall candidates c € C; do ‘

7) c.count++;

8) end)

9) Ly = {c € Ck | c.count > minsup}

10) end

11) Answer = J, Ly;

Figure 12.1
Algorithm apriori.

12.2.1 Algorithm Apriori

Figure 12.1 gives the Apriori algorithm. The first pass of the algorithm
simply counts the number of occurrences of each item to determine the
large 1-itemsets. A subsequent pass, say pass k, consists of two phases.
First, the large itemsets Li_; found in the (k—1)th pass are used to gen-
erate the candidate itemsets Cy, using the apriori-gen function described
in Section 12.2.1. Next, the database is scanned and the support of can-
didates in Cj, is counted. The candidates in Cj-that are contained in a
given transaction ¢ can be determined efficiently by using the hash-tree,
described when we talk about the subset function momentarily.

Apriori Candidate Generation The épridri-gen function takes as
an argument Lj;_;, the set of all large (k— 1)-itemsets. It returns a
superset of the set of all large k-itemsets. First, in the join step, we join

Fast Discovery of Association Rules 313

Ly—1 with Lg_1 to obtain a superset of the final set of candidates C.
The union p U q of itemsets p,q € Li—1 is inserted in Cj if they share
their k& — 2 first items:

1) insert into Cj

2) select p[1],p[2],...,plk—1],qlk—1]

3) from L1 p, Le-14¢ ‘

4) where p[l] = q[1],...,plk—2] = qlk~2], pk—1] < glk—1};

Next, in the prune step, we delete all itemsets ¢ € Cj, such that some
(k—1)-subset of c is not in Li—1. To see why this generation procedure
maintains completeness, note that for any itemset in Ly with minimum
support, any subset of size k—1 must also have minimum support. Hence,
if we extended each itemset in Lj_; with all possible items and then
deleted all those whose (k—1)-subsets were not in Li-1, we would be
left with a superset of the itemsets in Ly.

The join is equivalent to extending Li_, with each item in the database
and then deleting those itemsets for which the (k—1)-itemset obtained by
deleting the (k—1)th item is not in Ly_y;. Thus at this stage, Cx 2 L.
For the same reason, the pruning stage where we delete from Cj all
itemsets whose (k—1)-subsets are not in L1 also does not delete any
itemset that could be in L. ’

As an example, let L3 be {{1 23}, {124}, {134}, {135}, {234}}.
After the join step, Cy will be {{1 2 3 4}, {1 3 4 5} }. The prune step
will delete the itemset {1 3 4 5} because the itemset {1 4 5} is not in
L3. We will then be left with only {1 2 3 4} in Cy.

The prune step requires testing that all (k—1)-subsets of a newly gener-
ated k-candidate-itemset are present in Li_;. To make this membership
test fast, large itemsets are stored in a hash table.

Subset Function Candidate itemsets Cj are stored in a hash-tree.
A node of the hash-tree either contains a list of itemsets (a leaf node)
or a hash table (an interior node). In an interior node, each bucket
of the hash table points to another node. The root of the hash-tree is
defined to be at depth 1. An interior node at depth d points to nodes at
depth d + 1. Itemsets are stored in the leaves. When we add an itemset
¢, we start from the root ‘and go down the tree until we reach a leaf.
At an interior node at depth d, we decide which branch to follow by
applying a hash function to the dth item of the itemset, and following
the pointer in the corresponding bucket. All nodes are initially created

314 Agrawal et al.

1) L = {large 1-itemsets};

2) C: = database D;

3) for (k=2; Lg—1 # 0; k++) do begin

4) Gk = apriori-gen{Li-1); // New candidates

5) Cr=0;
6) forall entries t € Cy_; do begin
7 // determine candidates contained in the transactlon t. TID

Cy={ceCr|(c[1]-¢[2]-... c]k—1]) € t.set-of-itemsets A
(c[1]-c[2]... c]k—2]- c[k]) € tset-of-ltemsets},

8) forall candldates c€ Cido

9) c.count+-;

10) if (C; # 0) then Cy += < t.TID, C; >;
11) end

12) Ly = {c € C | c.count > minsup}

13) end

14) Answer = J, Ly;

Figure 12.2
Algorithm aprioriTid.

as leaf nodes. When the number of itemsets in a leaf node exceeds a
specified threshold, the leaf node is converted to an interior node.

Starting from the root node, the subset function finds all the candi-
dates contained in a transaction ¢ as follows. If we are at a leaf, we find
which of the itemsets in the leaf are contained in ¢ and add references to
them to the answer set. If we are at an interior node and we have reached
it by hashing the item %, we hash on each item that comes after ¢ in ¢
and recursively apply this procedure to the node in the corresponding
bucket. For the root node, we hash on every item in ¢.

To see why the subset function returns the desired set of references,
consider what happens at the root node. For any itemset ¢ contained in
transaction ¢, the first item of ¢ must be in t. At the root, by hashing on
every item in ¢, we ensure that we only ignore itemsets that start with
an item not in ¢. Similar arguments apply at lower depths. The only
additional factor is that, since the items in any itemset are ordered, if we
reach the current node by hashing the item ¢, we only need to consider
the items in ¢ that occur after 1. :

12.2.2 Algorithm AprioriTid
The AprioriTid algorithm, shown in Figure 12.2, also uses the apriori-

Fast Discovery of Association Rules 315

gen function (given in Section 12.2.1) to determine the candidate item-
sets before the pass begins. The new feature of this algorithm is that
the database D is not used for counting support after the first pass.
Rather the set ék is used for this purpose. Each member of the set
Ci is of the form < TID, {Xk} >, where each X} is a potentially large
k-itemset present in the transaction with identifier TID. For k = 1, C’1
corresponds to the database D, although conceptually each item 1 is re-
placed by the itemset {i}. For k > 1, Cj is generated by the algorithm
(step 10). The member of Cj, corresponding to transaction t is <¢.T'ID,
{c € Ci|c contained in t}>. If a transaction does not contain any can-
didate k-itemset, then Ck will not have an entry for this transaction.
Thus, the number of entries in C may be smaller than the number of
transactions in the database, especially for large values of k. In addition,
for large values of k, each entry may be smaller than the correspond-
ing transaction because very few candidates may be contained in the
transaction. However, for small values for k, each entry may be larger
than the corresponding transaction because an entry in Cj includes all
candidate k-itemsets contained in the transaction. We further explore
this trade-off in Section 12.4. 4

Example Consider the database in Figure 12.3 and assume that the
minimum support is 2 transactions. Calling apriori-gen with L; at step
4 gives the candidate itemsets C2. In steps 6 through 10, we count
the support of candidates in C by iterating over the entries in Cy and
generate Cp. The first entry in Cy is { {1} {3} {4} }, corresponding
to transaction 100. The C; at step 7 corresponding to this entry ¢ is
{ {1 3} }, because {1 3} is a member of C; and both ({1 3}-{1}) and
({1 3}-{3}) are members of t.

Callmg apriori-gen with L2 gives C3. Making a pass over | the data
with Cg and C3 generates 03 Note that there is no entry in C3 for the
transactions with TIDs 100 and 400, since they do not contain any of
the itemsets in C3. The candidate {2 3 5} in Cs turns out to be large
and is the only member of L3. When we generate Cy using L, it turns
out to be empty, and we terminate.

316 Agrawal et al.

Database 51 L
TID | Items TID | Set-of-Itemsets Itemset | Support
100 [134 100 | { {1}, {3}, {4} } {1} 2
200 | 235 200 | { {2}, {3}, {5} } {2} 3
300 [1235 300 | { {1}, {2}, {3}, {5} } {3} 3
400 | 25 400 | { {2}, {5} } {5} 3
Itemset C'2Support ' C2 La
TPT 1 TID | Set-of-Itemsets Teomset | Support
{13} 2 100 | {{13}} 13 2
{15} 1 200 | { {23}, {25}, {35}} {23} 2
23 . 300 | { {12}, {13}, {18}, 25 2
25} 3 {23}, {25}, {35} } {35} 2
{35} 2 400 | { {25}}
Cs
Cs L3
I{t:r;lsset Sup2port ’Z(I)f)) ?e;;o;-lstf r;xsets Itzer;mset Sup;ort
} 300 | {{235}}) {235}
Figure 12.3
Example.

12.3 Generating Rules

The association rules that we consider are somewhat more general than
in (Agrawal et al. 1993) in that we allow a consequent to have more
than one item. In this chapter we give an efficient generalization of the
algorithm in (Agrawal et al. 1993).

For every large itemset !, we output all rules a = (I —a), where a is a
subset of [, such that the ratio support(l)/support(a) is at least minconf.
The support of any subset 4 of a must be as great as the support of a.
Therefore, the confidence of the rule @ => (I — @) cannot be more than
the confidence of a = (I — a). Hence, if a did not yield a rule involving
all the items in ! with a as the antecedent, neither will @. It follows that
for a rule (I — a) = a to hold, all rules of the form (I — @) => @ must
also hold, where @ is a non-empty subset of a. For example, if the rule
AB = CD holds, then the rules ABC = D and ABD = C must also
hold.

This characteristic is similar to the property that if an itemset is large

Fast Discovery of Association Rules 317

1) forall large k-itemsets I, k > 2 do begin

2) Hi = { consequents of rules from [, with one item in the consequent };
3) call ap-genrules(ly, H1);
4) end

5) - procedure ap-genrules(l;: large k-itemset, Hm: set of m-item consequents)
6) if (k > m + 1) then begin

7 Hp41 = apriori-gen(Hnm);

8) forall hypt1 € Hpny1 do begin

9) conf = support(is)/support(ls = hms1);

10) if (conf > minconf) then

11) output the rule (I — hm41) = Ama1
with confidence = conf and support = support(l);

12) else

13) delete hm41 from Hppqg;

14) end

15) call ap-genrules(lx, Hpm+41);

16) end

Figure 12.4
Rule generation algorithm.

then so are all its subsets. From a large itemset I, therefore, we first
generate all rules with one item in the consequent. We then use the
consequents of these rules and the function apriori-gen in Section 12.2.1
to generate all possible consequents with two items that. can appear in
a rule generated from [, etc. An algorlthm using, thls 1dea, is given in
Figure 12.4.

12.4 Empirical Results

To assess the relative performance of the algorithms for discovering large
itemsets, we performed several experiments. We first describe the syn-
thetic datasets used in the performance evaluation. Then we show the
performance results on synthetic data and discuss the trends in perfor-
mance. We obtained similar results on real-life datasets (Agrawal and
Srikant 1994; Mannila et al. 1994). Finally, we describe how the best
performance features of Apriori and AprioriTid can be combined into
an AprioriHybrid algorithm and demonstrate its scale-up properties.

318 Agrawal et al.

The experiments were performed on an IBM RS/6000 530H worksta-
tion. To keep the comparison fair, we implemented all the algorithms
using the same basic data structures.

12.4.1 Synthetic Data

To evaluate the performance of the algorithms over a large operating
region, we developed synthetic transactions data. These transactions
attempt to mimic the transactions in the retailing environment. Our
model of the “real” world is that people tend to buy sets of items to-
gether. Each such set is potentially a maximal large itemset. An ex-
ample of such a set might be sheets, pillow case, comforter, and ruffles.
However, some people may buy only some of the items from such a set.
A transaction may contain more than one large itemset. For example,
a customer might place an order for a dress and jacket when ordering
sheets and pillow cases, where the dress and jacket together form another
large itemset. In our model, transaction sizes are small with respect to
the total number of items, i.e. the data is sparse. The transaction sizes
are typically clustered around a mean and a few transactions have many
items. Typical sizes of large itemsets are also clustered around a mean,
with a few large itemsets having a large number of items.

To create synthetic datasets, we used the following method. First we
generated 2000 potentially large itemsets from 1000 items. We picked
the size of a set from a Poisson distribution with mean equal to |I|
= 2, 4, or 6, and we randomly assigned items to the set. To model
that large itemsets often have common items, some fraction of items in
subsequent itemsets were chosen from the previous itemset generated.
Each itemset has a weight associated with it, which corresponds to the
probability that this itemset will be picked. This weight is picked from
an exponential distribution with unit mean, and is then normalized so
that the sum of the weights for all the itemsets is 1. , |

Then we generated |D| = 100,000 transactions. The average size |T’|
of a transaction was 5, 10 or 20, and the size was picked from a Pois-
son distribution. Each transaction was assigned a series of fractions of
potentially large itemsets, to model that all the items in a large itemset
are not always bought together.

The number of transactions was to set to 100,000 because, as we will
see in Section 12.4.2, SETM could not be run for larger values. However,
for our scale-up experiments, we generated datasets with up to 10 million

Fast Discovery of Association Rules 319

Table 12.2
Parameters and sizes of datasets.
Name i | 1) |D| MB

T5.12.D100K 5 2 | 100K | 2.4

T10.14.D100K 10 4] 100K | 44
T20.14.D100K 20 4 | 100K | 84
T20.16.D100K 20 6 | 100K | 84
Table 12.3
Execution times for T10.14.D100K (sec).
Algorithm Minimum Support (%)
201 1.5 1.0 | 0.75 0.5
SETM 41 91 659 929 | 1639
Apriori 38|48 | 112|174 | 193

transactions (838MB for |T'| = 20). Table 12.2 summarizes the dataset
parameter settings. A more detailed description of the synthetic data
generation can be found in (Agrawal and Srikant 1994).

12.4.2 Experiments with Synthetic Data

Figure 12.5 shows the execution times for the four synthetic datasets
given in Table 12.2 for decreasing values of minimum support. As the
minimum support decreases, the execution times of all the algorithms
increase because of increases in the total number of candidate and large
itemsets.

Apriori outperforms AIS for all problent sizes, by factors ranging from
2 for high minimum support to more than an order of magnitude for low
levels of support. For small problems, AprioriTid did about as well as
Apriori, but its performance degraded to be about twice as slow for large
problems.

For SETM, we have only plotted the execution times for the dataset
T5.12.D100K in Figure 12.5. The execution times for SETM for T10.14.
D100K are given in Table 12.3. We did not plot the execution times
in Table 12.3 on the corresponding graphs because they are too large
compared to the execution times of the other algorithms. For the two
datasets with transaction sizes of 20, SETM took too long to execute
and we aborted those runs as the trends were clear. Clearly, Apriori out-
performs SETM by more than an order of magnitude for large datasets.

320 Agrawal et al.

T5.12.D100K T10.14.D100K
350
®© SETM -+ Aprioftg
® sorota > > o
L v 250 /
% J
.i 50 // 'i 200 S/
T w0 e ? 7
i o é 1580 /
20 ,‘/ ,//
< A~ 100 -
20 P i // -
of T — ® o p—]
| el o e) M_—;/—'
0 s 1 078 05 033 025 %2 18 1075 05 03 025
Minimum Suppor {% of traneactions) Minimum Support (% of traneactions)
T20.14.D100K T20.16.D100K
1800 3800 —
1600 NS 2 2000 » wm.”g =
e [Aerort -—
oo W/’ /
y 2600 /
1200 //
§ oo / i 2000 /
E 800 / \ E 1500 ,'
600) 1000 /
/
500 / e '_',";:.:
. et
2 18 oo ot o™ OB

Figure 12.5
Execution times: synthetic data.

12.4.3 Explanation of the Relative Performance

To explain these performance trends, we show in Figure 12.6 the sizes
of the large and candidate sets in different passes for the T10.14.D100K
dataset for the minimum support of 0.75%. Ly is the lower bound for
all the curves. Note that the Y-axis in this graph has a log scale.

The problem with the SETM algorithm is the size of its 6*k sets.
Recall that the size of the set Cj is given by 3_ ¢, support-count(c).
Thus, the sets Cy are roughly S times bigger than the corresponding
C} sets, where S is the average support count of the candidate itemsets.
Unless the problem size is very small, the Ci sets have to be written
to disk, and externally sorted twice, causing the SETM algorithm to
perform poorly. For datasets with more transactions, the performance
gap between SETM and the other algorithms will become even larger.

The problem with AIS is that it generates too many candidates that

Fast Discovery of Association Rules 321

C-hat-k (SETM) —~—
10408 | O BN SE) v
' \ Ck(Aprlors ApﬂodTld

1

3 4
Pass Number

Figure 12.6
Sizes of the large and candidate sets (T10.14.D100K, minsup = 0.75%).

later turn out to be small, causing it to waste too much effort. Apriori
also counts too many small sets in the second pass (recall that C; is
really a cross-product of Ly with L;). However, this wastage decreases
dramatically from the third pass onward.

AprioriTid also has the problem of SETM that C. tends to be large.
However, the apriori candidate generation used by AprioriTid gener-
ates significantly fewer candidates than the transactlon—based candidate
generation used by SETM. As a result, the Cr of AprioriTid has fewer
entries than that of SETM. In addition, unlike SETM, AprioriTid does
not have to sort Ck. Thus, AprioriTid does not suffer as much as SETM
from maintaining ék

AprioriTid has the nice feature that it replaces a pass over the original
dataset by a pass over the set Ck Hence, AprioriTid is very effective
in later passes when the size of Ck becomes small compared to the size
of the database. Thus, we find that AprioriTid beats Apriori when its
Ck sets can fit in memory and the distribution of the large itemsets
has a long tail. When Gy doesn’t fit in memory, there is a jump in
the execution time for AprioriTid, such as when going from 0.75% to
0.5% for datasets with transaction size 10 in Figure 12.5. In this region,
Apriori starts beating AprioriTid.

322 Agrawal et al.

12.4.4 Algorithm AprioriHybrid

Based on the observations above, we can design a hybrid algorithm,
which we call AprioriHybrid, that uses Apriori in the initial passes and
switches to AprioriTid when it expects that the set Ck at the end of the
pass will fit in memory.

We use the following heuristic to estimate if Ci would fit in mem-
ory in the next pass. At the end of the current pass, we have the
counts of the candidates in Cx. From this, we estimate what the size
of C, would have been if it had been generated. This size, in words,
is (L candidates ¢ € Cj, SuPPort(c) + number of transactions). If Cr in
this pass was small enough to fit in memory, and there were fewer large
candidates in the current pass than the previous pass, we switch to
AprioriTid.

We have run performance tests with the datasets described earlier, and
AprioriHybrid performs better than Apriori and AprioriTid in almost
all cases. AprioriHybrid does a little worse than Apriori when the pass
in which the switch occurs is the last pass; AprioriHybrid thus incurs
the cost of switching without realizing the benefits. AprioriHybrid did
up to 30% better than Apriori, and up to 60% better than AprioriTid.

12.4.5 Scale-up Experiment .

Figure 12.7 shows how AprioriHybrid scales up as the number of trans-
actions is increased from 100,000 to 10 million transactions. We used
the combinations (T5.12), (T10.I4), and (T20.16) for the average sizes
of transactions and itemsets respectively. All other parameters were the
same as for the data in Table 12.2. The sizes of these datasets for 10
million transactions were 239MB, 439MB and 838MB respectively. The
minimum support level was set to 0.75%. The execution times are nor-
malized with respect to the times for the 100,000 transaction datasets
in the first graph and with respect to the 1 million transaction dataset
in the second. As shown, the execution times scale quite linearly. Al-
though we do not give the graphs, similar experiments showed that the
Apriori algorithm also scales linearly.

Fast Discovery of Association Rules 323

Relative Time

o . ; .
100 250 §00 750 1000
g
s
8
é
1 25 "5 75 10
Number of Transactions (in Millions)
Figure 12.7

Number of transactions scale-up.

12.5 Theoretical Analyses

The algorithms presented in the previous sections perform quite well in
practice. Their running time is bounded by O(||C|| - |D|), where [[cll
denotes the sum of the sizes of candidates considered and |D| denotes
the size of the database.

12.5.1 A Lower Bound

The quantity ||C|| can be expohential in the number of items, as all
itemsets can be large. If there are only a few large sets, the above

324 Agrawal et al.

algorithms still investigate several candidates. Next we show that this is
to some degree inevitable. Namely, we now give an information-theoretic
lower bound for finding one association rule in a restricted model of
computation where the only way of getting information from a database
D is by asking questions of the form “is the set X large.” This model is
realistic in the case the database D is large and stored using a database
system.

Assume the database D has m items. In the worst case one needs at
least

log (7:) ~ klog(m/k)

questions of the form “is the set X large” to locate one maximal large
set, where k is the size of the large set.
The proof of this claim is simple. Consider a database with exactly 1

maximal large set of size k. There are (7’?) different possible answers

to the problem of finding the maximal large set. Each question of the
form “is the set X large” provides at most 1 bit of information.

This lower bound is not optimal for small values of k. For example,
assume that there is exactly one large set of size 1. Then any algorithm
for finding this set has to use at least ©(m) queries of the above type.
However, the bound is fairly tight for larger values of k.

Loveland (1987) has considered the problem of finding “critical sets.”
Given a function f : P(R) — {0,1} that is upwards monotone (i.e., if
f(Y)=1and Y C X, then f(X) = 1), a set X is eritical if f(X) = 1,
but f(Z) = 0 for all subsets Z of X. Thus maximal large itemsets are
complements of critical sets of the upwards monotone function f(X) = 0,
if X is large, and f(X) = 1, otherwise. For example for £ = m/2, the
lower bound above matches exactly the upper bound provided by one of
Loveland’s algorithms.

12.5.2 Probabilistic Analysis of Random Databases

The number of large sets is an important factor influencing the running
times of the algorithms. We now show that in one model of random
databases all large itemsets have small size.

Consider a random database D = {T3,...,T,} over items T = {i;, i3,
..+, im }; assume that each transaction T of the database contains any

Fast Discovery of Association Rules 325

item i; with probability ¢, and assume that the entries are independent.
Then the probability that Tk contains i; for all i; in a given itemset X
is ", where h = | X|. The number z of such transactions has a binomial
distribution with parameters n and ¢".

The Chernoff bounds (Alon and Spencer 1992; Hagerup and Riib
1989/90) state that for all a > 0 we have

Priz > ng" +4] < g2/,

We thus obtain

Prlz > sn] = Priz > ng" + n(s = ¢")] < e~ nle=a"?

where n is the number of transactions |D| and s is the minimum support
minsup. Thus the expected number of large itemsets of size h is bounded
by m"e‘zn("qh)z, where m is the number of items. This is less than 1
provided s > 1/(hlnm)/n + q". For large databases and thus for large
n the first term is very small. Hence if s > ¢", the expected number
of large sets of size is small. (For s = minsup = 0.01 and g = 0.1, this
means h > 2; for s = 0.0001 and ¢ = 0.1, this means h > 4.) Thus a
random database typically has only very few large itemsets. Of course,
databases occurring in practice are not random.

12.5.3 Analysis of Sampling

The running times of the algorithms depended linearly on the size of the
database. One possibility of lowering this factor is to use only a sample
of transactions. We show that small samples are sometimes quite good
for finding large itemsets.

Let s be the support of a given set X of items. Consider a ra.ndom
sample with replacement of size h from the database. Then the number
of transactions in the sample that contain X is a random variable z with
binomial distribution of h trials, each having success probability s. We
can again use the Chernoff bounds. The probability that the estimated
support is off by at least « is ,

Priz > h(s+a)] < e=2"h?/h e“2°‘2h,

i.e., bounded by a quantity exponential in A.
Table 12.4 presents sufficient sample sizes, given values for o and
probabilities of error more than a. For accuracy to be within support

326 Agrawal et al.

Table 12.4
Sufficient sample sizes, given values for a and probabilities of error more than a.
a= 1% 0.1% 0.01% 0.001%
Prierror > o)~ 1% | 23000 | 2.3.106 | 23.10%8 [23.1010
Prlerror >a]~5% | 15000 [1.5.10 | 1.5-108 | 1.5.10%°
Prlerror > o] ~ 10% | 11500 | 1.15-108"] 1.15-108 | 1.15-10%°

of an itemset + 1%, samples of some dozens of thousands of examples
can be sufficient. For association rules with support in fractions of a
percent (where we would like accuracy to be within 0.01% or 0.001%),
these bounds indicate that sampling is not effective. Note that the
completeness guarantee of finding all the rules satisfying the minimum
support and confidence constraints is lost when we use sampling.

12.6 Conclﬁéions and Open Problems

Association rules are a simple and natural class of database regularities,
useful in various analysis and prediction tasks. We have considered
the problem of finding all the association rules satisfying user-specified
support and confidence constraints that hold in a given database.

We presented two new algorithms, Apriori and AprioriTid, for discov-
ering all significant association rules between items in a large database of
transactions. We compared these algorithms to algorithms introduced
in earlier work, the AIS (Agrawal et al. 1993) and SETM (Houtsma
and Swami 1993) algorithms. We presented experimental results, using
synthetic data, showing that the proposed algorithms always outperform
AIS and SETM. We obtained similar resuits with real data (Agrawal and
Srikant 1994; Mannila et al. 1994). The performance gap increased with
the problem size, and ranged from a factor of three for small problems
to more than an order of magnitude for large problems. k

We showed how the best features of the two proposed algorithms can
be combined into a hybrid algorithm, called AprioriHybrid, which then
becomes the algorithm of choice for this problem. The scale-up prop-
erties of AprioriHybrid and Apriori demonstrate the feasibility of us-
ing these algorithms in real applications involving very large databases.
However, the implementation of AprioriHybrid is more complex than
Apriori. Hence the somewhat worse performance of Apriori may be an
acceptable tradeoff in some situations. We have also analyzed the theo-

Fast Discovery of Associatidn Rules 327

retical properties of the problem of finding association rules.
Several problems remain open and are subject to further research.

o Multiple taxonomies (is-a hierarchies) over items are often avail-
able. An example of such a hierarchy is that a dish washer is a
kitchen appliance is a heavy electric appliance, etc. We would like
to be able to find association rules that use such hierarchies.

o We did not consider the quantities or values of the items bought in
a transaction, which are important for some applications. Finding
such rules needs further work.

e We may be interested in only those rules in which certain items
appear in the consequént and/or antecedent. Pushing constraints
on antecedents into the computation is quite straightforward, but
the exploitation of constraints on the consequent is an interesting
problem. More generally, the question is about using the user
input or domain knowledge to improve the execution efficiency of
the mining process.

References

Agrawal, R., Imielinski, T., and Swami, A. 1993. Mining Association Rules
between Sets of Items in Large Databases. In Proceedings, ACM SIG-
MOD Conference on Management of Data, 207-216. Washington, D.C.

Agrawal, R., and Srikant, R. 1994. Fast Algorithms for Mining Associa-
tion Rules. IBM Research Report RJ9839, June 1994, IBM Almaden
Research Center, San Jose, Calif..

Alon, N.; and Spencer, J. H. 1992. The Probabilistic Method. New York
John Wiley Inc.

Brachman, R., et al. 1993. Integrated Support for Data Archeology. Pre-
sented at the AAAT Workshop on Knowledge Discovery in Databases,
Washington, D.C.

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and Stone, C. J. 1984. Classi-
fication and Regression Trees. Belmont, Calif.: Wadsworth.

Cheeseman, P.; Kelly, J.; Self, M.; Stutz, J.; Taylor, W.; and Freeman, D.
1988. AutoClass: A Bayesian Classification System. In Proceedings,
Fifth International Conference on Machine Learning, 54-64. San Ma-
teo, Calif.: Morgan Kaufmann.

Fisher, D. H. 1987. Knowledge Acquisition Via Incremental Conceptual Clus-
tering. Machine Learning 2(2): 139-172.

328 Agrawal et al.

Hagerup, T., and Riib, C. 1989/90. A Guided Tour of Chernoff Bounds.
Information Processing Letters 33: 305-308.

Houtsma, M.; and Swami, A. 1993. Set-Oriented Mining of Association
Rules. Research Report RJ 9567, Oct. 1993, IBM Almaden Research
Center, San Jose, Calif.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A.
1. 1994. Finding Interesting Rules from Large Sets of Discovered Asso-
ciation Rules. In CIKM’94: Conference on Information and Knowledge
Management, 401-407. Gaithersburg, Md.

Langley, P.; Simon, H.; Bradshaw, G.; and Zytkow, J. 1987, Scientific
Discovery: Computatwnal Ezploratwns of the Creative Process Cam-
bridge, Mass.: The MIT Press.

Loveland, D. W. 1987. Finding Critical Sets. Journal of AlgonthmsS 362-
371.

Mannila, H., and Réihd, K.-J. 1992. On the Complexity of Inferring Func-
tional Dependencies. Discrete Applied Mathematics 40: 237-243.
Mannila, H., and Raihd, K.-J. 1994. Algorithms for Inferring Functional
Dependencies from Relations. Data & Knowledge Engineering 12(1):

83-99.

Mannila, H., Toivonen, H., and Verkamo, A. L. 1994 Efficient Algorithms for
Dlscovermg Assoc1a.tlon Rules. In Knowledge Discovery in Databases,
Tech. Report WS-94-03, American Association for Artificial Intelli-
gence, Menlo Park, Calif.

Muggleton, S., and Feng, C. 1992. Efficient Induction of Logic Programs.
In Inductive Logic Programming, 281-298, ed. S. Muggleton. London:
Academic Press.

Piatetsky-Shapiro, G. 1991. Discovery, Analysis, and Presentation of Strong

Rules. In Knowledge Discovery in Databases, 220-248, ed. G. Piatetsky-
Shapiro and W. Frawley. Menlo Park, Calif.: AAAI Press.

Piatetsky-Shapiro, G., and Frawley, W., eds, 1991. Knowledge Discovery in
Databases. Menlo Park, Calif.: AAAI Press.

Piatetsky-Shapiro, G., and Matheus, C. J. 1994. The Interestingness of
Deviations. Presented at the AAAI Workshop on Knowledge Discovery
in Databases, Seattle, Wash.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San Mateo,
Calif.: Morgan Kaufmann.

Spiegelhalter; D.; Dawid, A.; Lauritzen, S.; and Cowell, R. 1993. Bayesian
Analysis in Expert Systems. Statistical Science 8(3): 219-283.

