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Data Mining Applied to Linkage Disequilibrium Mapping
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We introduce a new method for linkage disequilibrium mapping: haplotype pattern mining (HPM). The method,
inspired by data mining methods, is based on discovery of recurrent patterns. We define a class of useful haplotype
patterns in genetic case-control data and use the algorithm for finding disease-associated haplotypes. The haplotypes
are ordered by their strength of association with the phenotype, and all haplotypes exceeding a given threshold
level are used for prediction of disease susceptibility–gene location. The method is model-free, in the sense that it
does not require (and is unable to utilize) any assumptions about the inheritance model of the disease. The statistical
model is nonparametric. The haplotypes are allowed to contain gaps, which improves the method’s robustness to
mutations and to missing and erroneous data. Experimental studies with simulated microsatellite and SNP data
show that the method has good localization power in data sets with large degrees of phenocopies and with lots of
missing and erroneous data. The power of HPM is roughly identical for marker maps at a density of 3 single-
nucleotide polymorphisms/cM or 1 microsatellite/cM. The capacity to handle high proportions of phenocopies
makes the method promising for complex disease mapping. An example of correct disease susceptibility–gene
localization with HPM is given with real marker data from families from the United Kingdom affected by type 1
diabetes. The method is extendable to include environmental covariates or phenotype measurements or to find
several genes simultaneously.

Introduction

The use of linkage disequilibrium (LD) in detecting dis-
ease genes has recently drawn much attention in genetic
epidemiology. LD is evaluated with association analysis,
which, when applied to disease-gene mapping, requires
the comparison of allele or haplotype frequencies be-
tween the affected and the control individuals, under the
assumption that a reasonable proportion of disease-as-
sociated chromosomes has been derived from a common
ancestor. Traditional association-analysis methods have
long been used to test the involvement of candidate genes
in diseases and, in special circumstances, to fine-map
disease loci found by linkage methods. The testing has
mostly been done using simple two-point measures.

Improved statistical methods to detect LD have been
presented lately (Terwilliger 1995; Devlin et al. 1996;
Lazzeroni 1998; McPeek and Strahs 1999; Service et al.
1999). The newer methods are based on statistical mod-
els of LD around a disease susceptibility (DS) gene. Ge-
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nomic regions—rather than alleles—that are shared
among affected individuals, are searched for. The re-
combination history from the common ancestor to the
present day is taken into account with more or less
simplified statistical models. The power of these meth-
ods, as well as their ability to localize the correct po-
sition of the DS gene, has been shown to be better than
that of traditional methods. Some of the models are
robust to high levels of etiologic heterogeneity (McPeek
and Strahs 1999; Service et al. 1999). However, the
methods contain assumptions about the inheritance
model of the disease and the structure of the survey
population, and the effects of violations of these as-
sumptions in the real data are not known. In addition,
they can only consider association of one region at a
time. Thus, they are currently best suited for fine map-
ping, rather than complex disease mapping or genome
screening. The methods also tend to be computationally
heavy.

In this study, we introduce haplotype pattern mining
(HPM), a technique that uses data mining methods in
LD-based gene mapping. HPM is based on algorithms
developed to find frequent patterns efficiently from large
databases (Agrawal et al. 1993, 1996). The method uses
haplotypes as input; they can be obtained, for example,
with GENEHUNTER (Kruglyak et al. 1996). In diseases
with a reasonable genetic contribution, affected indi-
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viduals are likely to have higher frequencies of associ-
ated marker alleles near the DS gene than control in-
dividuals. Combinations of marker alleles which are
more frequent in disease-associated chromosomes than
in control chromosomes, are searched for in the data,
without assumptions about the mode of inheritance of
the disease. These combinations, haplotype patterns, are
sorted by the strength of their association to the disease,
and the resulting list of haplotype patterns is used in
localizing the DS gene.

The method is an algorithm-based extension of tra-
ditional association analysis. It works with a nonpar-
ametric statistical model and without any genetic mod-
els. The localization power of the method is high, even
with weak associations—for example, when disease-as-
sociated haplotypes are found in only 5%–10% of dis-
ease-associated chromosomes at realistic sample sizes
(100–200 affected individuals) with either microsatellite
or single-nucleotide polymorphism (SNP) data. The
method is robust to mutations as well as to missing and
erroneous data. Since HPM can handle high degrees of
etiologic heterogeneity, it can be successful in complex
disease mapping. We show as an example that HPM
can accurately localize a DS gene in marker data from
a complex disease, type 1 diabetes. For future work, it
is conceptually rather straightforward to extend the ap-
proach to find several genes simultaneously.

Methods

LD, the nonrandom association of marker alleles and
haplotypes to the disease, is likely to be strongest around
the DS gene; consequently the locus is likely to be where
most of the strongest associations are. In the HPM
method we search for shared, flexible haplotypes that
may contain gaps and find out which ones are strongly
associated to the disease status. We then use a nonpar-
ametric model for predicting the DS locus, on the basis
of the locations of the haplotypes. Permutation tests can
be used to contrast the results against the null hypothesis
that there is no gene effect.

Haplotype Patterns and Disease Association

We examine linkage disequilibrium by looking for
haplotype patterns that consist of a set of nearby mark-
ers, not necessarily consecutive ones. Given a marker
map M with k markers , a “haplotype pattern”m ,...,m1 k

P on M is defined as a vector ( ), where eachp ,...,p p1 k i

is either an allele of marker or the “don’t care” sym-mi

bol (*). The haplotype pattern P occurs in a given hap-
lotype vector (chromosome) ) if orH = (h ,...,h p = h1 k i i

= * for all . For example, consider a markerp i,1 < i < ki

map of 10 markers. The vector P1 = (*, 2, 5, *, 3, *, *,
*, *, *), where 1, 2, 3,… are marker alleles, is an example
of a haplotype pattern. This pattern occurs, for instance,

in a chromosome with haplotype (4, 2, 5, 1, 3, 2, 6, 4,
5, 3).

Our goal is to search for haplotype patterns that
roughly correspond to haplotypes identical by descent
in the disease-associated chromosomes. In doing this,
there are two major issues with respect to the shapes of
haplotype patterns: the genetic length of the significant
part of the patterns, and gaps. We define the “(genetic)
length” of a haplotype pattern ) as the max-P = (p ,...,p1 k

imum distance, in Morgans, between any two markers
with . Searching for haplotype patternsm ,m p ( ∗ ( pi j i j

of arbitrary length hardly makes sense; it is unlikely that
genetically extremely long patterns will be discovered,
at least not in significant numbers. Consequently, when
haplotype patterns are searched for, the maximum length
of patterns to be considered can be constrained with an
optional pattern-search parameter to the HPM method.

We allow for gaps in the haplotype patterns, since
mutations, errors, missing data, and recombinations can
corrupt continuous haplotypes. Marker mutations and
errors typically cause very short gaps only. Missing in-
formation can span several consecutive markers, de-
pending on the data collection scheme. Longer gaps can
be introduced by double recombinations which, how-
ever, are rare on genetically short distances. In the HPM
method, the maximum number and maximum length of
gaps can be controlled with pattern search parameters.

Mining Disease-Associated Haplotype Patterns

We present the HPM method in terms of the (signed)
measure of marker-disease association. A signed ver-2x

sion of the measure is used in order to discriminate dis-
ease association from control association. The signed x2

measure 5 x2(P) of a haplotype pattern P is positive if
P is more frequent in cases than in controls, and negative
otherwise. Given a “(positive) association threshold” x,
we say that P is “strongly associated” with the disease
if .25x (P) > x

The first part of the HPM method can be described
as follows. Given the data—markers M, haplotypes H,
and phenotypes Y—the task is to output all haplotype
patterns P that are strongly associated with the disease
status for a given value of the association threshold x.
We denote the collection of all such haplotype patterns
by —that is, P = {P is a haplotype pattern on M F 5P

x2(P)>x}. If pattern parameters are specified—a maxi-
mum genetic length, a maximum number of gaps, or a
maximum length for gaps—the task is refined by re-
quiring that these additional restrictions are also
fulfilled.

The first observation in solving the pattern-mining
task is that given an association threshold x, a lower
bound can be derived for the frequency of strongly as-
sociated haplotype patterns (appendix A). On another
hand, given such a frequency threshold, all patterns ex-
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ceeding the threshold can be enumerated efficiently with
data-mining algorithms (Agrawal et al. 1993; Agrawal
et al. 1996) or a standard depth-first search method. An
algorithm that first finds all haplotype patterns whose
frequency exceeds the computed lower bound and then
evaluates the association measure on them, is guaranteed
to find the exact set of strongly disease-associated
patterns.

The approach is suitable for finding protective hap-
lotypes, by considering patterns P with .25x (P) < 2x
The derivation of the lower bound for the frequency
among controls is identical to the case above. Obviously,
both disease-associated and protective haplotypes can
be found when .2F 5 x (P)F > x

Gene Localization

Haplotype patterns close to the DS locus are likely to
have stronger association than haplotypes further away;
consequently the locus is likely to be where most of the
strongest associations are. We compute the marker fre-
quency ) of marker (with respect to ) asf(m m M,H,Y,xi i

the number of patterns that contain marker , possiblymi

in a gap: there existf(m ) = F{P = (p ,...,p ) P PF t < ii 1 k

and such that . The idea is that eachu > i p ( ∗ ( p }Ft u

haplotype pattern roughly corresponds to a continuous
chromosomal region, potentially identical by descent,
where gaps allow for corruption of marker data. While
markers within gaps are not used in measuring the dis-
ease association of the pattern, the whole chromosomal
region of the pattern is thought to be relevant.

The marker frequency gives a score for each marker.
On the condition that we assume a DS gene to be present;
for example, on the basis of linkage analysis, we would
predict the gene to be somewhere close to the markers
with largest frequencies. As a point prediction , we sim-l̂
ply give the locus of the most frequent marker: locusl̂ =
of marker arg maxi [f(mi)]. This does not, of course,
imply that we assume the DS locus to overlap with the
marker in reality; we simply make predictions about the
granularity of marker density. Consequently, the optimal
point predictions of our method are within one half of
the intermarker distance from the true loci.

Permutation Tests

The results obtained by considering marker frequen-
cies can be contrasted against the null hypothesis that
all the chromosomes are drawn from the same distri-
bution; that is, there is no gene effect in the disease
status. We propose to permute randomly the status fields
of the chromosomes, keeping the proportions of affected
and control chromosomes constant, in a fashion similar
to the methods of Churchill and Doerge (1994), Laitinen
et al. (1997), and Long et al. (1998).

We approximate markerwise P values using permu-
tations and then predict the DS gene to be in the vicinity

of the marker with the smallest empirical P value. Con-
secutive markers are dependent, and thus a large number
of mutually dependent P values are produced. This is
not a problem, since we do not use the P values for
hypothesis testing, but only for ranking markers.

Results

Simulated Data Sets

We evaluated the performance of the proposed HPM
method with simulated data sets that correspond to a
recently founded, relatively isolated founder subpopu-
lation. Simulation of a population isolate was chosen,
since it is recommended as the study population for LD
studies (Wright et al. 1999). However, the method can
be applied to any population that is suitable for LD
analysis, since no assumptions are made about the pop-
ulation structure.

An isolated founder population which grows from the
initial size of 300 to ∼100,000 individuals in 500 years
was simulated. Each individual was assigned to have one
pair of homologous chromosomes. The genetic length
of the chromosomes was 100 cM for both males and
females. No chiasma interference was modeled. In all
microsatellite-marker simulations, the information con-
tent (PIC) of each marker was fixed at 0.7, and the
markers were spaced at intervals of 1 cM. In the SNP
data, marker loci were simulated with a density of 3
markers per 1 cM of chromosome. The allele frequency
was set to 0.5, and the PIC was thus fixed at 0.375.

We used a dominant disease model with a high phe-
nocopy rate in our experiments. The sample size was
400 chromosomes (200 individuals), of which 200 were
control chromosomes. This relatively small sample size
was used to study the performance of the method in
realistic situations. In the affected sample the proportion
of mutation-carrying chromosomes, denoted by A, was
either 2.5%, 5%, 7.5%, or 10%, corresponding to over-
all relative risks of , , , andl = 1.2 l = 1.7 l = 2.7 l =

, respectively, for first-degree relatives (for principles4.1
of risk calculations, see studies by Risch [1990], Suarez
et al. [1978], and Camp [1997]). These low IBD and l

values were chosen, as the higher are easy to handle with
existing methods. We ignored marker mutations in the
simulation procedure, but compensated for this by eval-
uating the performance in presence of missing and cor-
rupted data. Both were introduced by removing or
changing alleles randomly and independently. The
amount of missing data varied between 0% and 20%,
and the fraction of corrupted alleles between 0% and
10%.

We used the Populus simulator package (V. Ollikai-
nen, H. Mannila, R. Kilpikari, M. Koivisto, H. Kärk-
käinen, M. Mäkelä, P. Onkamo, S. Smolander, and J.
Kere, unpublished data) to obtain artificial data sets for
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the analyses. The package consists of a pedigree gen-
erator and a chromosome simulator, and enables crea-
tion of data sets with realistic linkage disequilibrium. A
detailed description of population parameters as well as
the simulation procedure are presented in appendix B.

Parameters

We performed extensive gene localization experiments
with different parameter values. For a basic setting,
within which we compared the performance of the
method in different data sets, we selected the following
parameter values. The maximum length of haplotype
patterns was restricted to seven consecutive markers,
which corresponds to segments of 6–8 cM. This is close
to the average length of shared haplotypes in a popu-
lation of ∼500 years of age. To allow for reasonable
flexibility, at most two gaps were allowed per haplotype,
and their lengths were limited to one marker. These pa-
rameter values prune patterns which are not biologically
conceivable (unreasonably long haplotype patterns, or
those consisting mainly of gaps) and, from a practical
point of view, they allow faster execution and experi-
menting with the method than more flexible parameters.
With these parameter values, localization time for one
simulated data set on a 400-MHz Pentium PC was
around one minute. The association threshold for the
signed measure was set to x = 9, on the basis of25x

earlier work on similar data and methods (V. Ollikainen,
H. Mannila, R. Kilpikari, M. Koivisto, H. Kärkkäinen,
M. Mäkelä, P. Onkamo, S. Smolander, and J. Kere, un-
published data) and some experimenting. To ensure that
the selection of these particular values is not critical for
the method and to assess the robustness of HPM in this
respect, we also experimented using patterns with un-
limited length, with longer gaps, and without gaps.

Localization Accuracy

To illustrate the HPM method, figure 1a shows the
list of 11 most strongly disease-associated haplotype pat-
terns in a simulated data set with (10% ofA = 10%
disease-associated chromosomes carry the mutation; no
missing or corrupted data). The chromosome has 101
markers, but the patterns with strongest association oc-
cur between markers 1 and 6. The bottom line gives the
marker frequencies for these markers, and the frequen-
cies are also plotted as a histogram in figure 1b. Markers
2-4 have the highest frequency, closely followed by
markers 5 and 1. The true gene location is in this data
set halfway between markers 5 and 6 (depicted by a
dashed vertical line). Figure 1c shows a frequency his-
togram for the same data set, but this time with all
haplotype patterns exceeding the association threshold
of 9. Marker 5 has now the highest frequency and is

therefore predicted as the gene location; a vertical line
shows, again, the true location at position 5.5.

The true versus predicted locations for 100 simulated
data sets with are shown in figure 1d; the dataA = 10%
set of figure 1c is represented by a cross at (5.5, 5).
Overall, the predicted location shows good agreement
with the true location. The localization accuracy and the
effect of phenocopies was explored in more detail by
plotting curves similar to power graphs: the height of
the curve shows the fraction of data sets for which the
localization was successful, as a function of the allowed
localization error (fig. 2a). The solid line represents the
results given by figure 1d: for instance, in 90% of the
simulations the error is <4 cM. For the ac-A = 7.5%
curacy is near that for , but for a clearA = 10% A = 5%
drop can be observed and for the localizationA = 2.5%
method does not perform significantly better than ran-
dom guessing. Our explicit aim was to test realistic
(small sample sizes) but difficult ( )2.5% < A < 10%
cases, in order to explore the limits of the
method—which in this case and with respect to A seem
to be somewhere around . For larger samplesA = 5%
and lower phenocopy rates, the results should obviously
be at least as good as those presented here.

The effect of sample size was examined by doubling
the number of both chromosomes—that is, with data
sets of 400 1 400 chromosomes (fig. 2b). Compared to
the smaller data set (fig. 2a), the localization accuracy
improves significantly for low values of A ( ,A = 5%
2.5%); for larger values of A, there is not much differ-
ence. (It is a coincidence that localization accuracy seems
slightly better for than for in fig.A = 7.5% A = 10%
2b.)

The effect of corrupted data, i.e., genotyping errors
and sporadic marker mutations, was tested by randomly
changing alleles in the data. Figure 2c shows the influ-
ence of having <10% of data corrupted (with A =

). Marker mutations were not modeled in simula-10%
tions, but the mutation process—involving the coales-
cence of the mutated allele through generations to sev-
eral persons with the common mutation in the final study
population—should actually make the associations eas-
ier to detect than random changes of alleles do. The
influence of having up to 20% missing data was explored
in a similar manner (fig. 2d, ). The effect ofA = 10%
missing data corresponds to that of corrupted data, as
could be expected. There is hardly any difference in the
accuracy with 0%–5% of data corrupted or missing.
Higher proportion (>10%) results in a slight decrease
in performance. The combined effect of corrupted and
missing data contained no surprising interactions.

The HPM method was compared to two simpler al-
ternatives (fig. 2e, ). The first one was to takeA = 10%
the single most strongly associated haplotype without
gaps and to predict the DS locus to be in the middle of
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Figure 1 a, Examples of strongly disease-associated haplotype patterns discovered in a data set with ; only the first 8 markersA = 10%
of 101 are shown. b, Corresponding marker frequencies (“Don’t care” symbols (*) in gaps are included in marker frequencies.) c, Marker
frequencies in the same data set with all strongly disease-associated haplotype patterns. d, Plot of the true versus the predicted locations of the
DS gene for 100 data sets ( ).A = 10%

that haplotype. The second was to localize with hap-
lotype patterns without gaps. With correct data (three
higher curves), there is not much difference between the
performance of the methods for error bounds !4 cM.
More differences appear as corrupted and missing data
are introduced (lower three curves), and the HPM
method seems to outperform the other methods by find-
ing the approximately correct region more consistently.

In order to assess the robustness of the method with
respect to the selection of pattern search parameters,
simulated data with , 1% corrupted and 20%A = 10%
missing, was reanalyzed (fig. 2f). The effect of gaps in
the patterns was evaluated by either prohibiting gaps (as
in fig. 2e) or by allowing the gaps to be up to three
markers long instead of just one. In addition, a test was
run where the length of the haplotype patterns was not
limited. Differences start to appear at error bounds of
at least 2–4 cM; allowing longer gaps improves the per-

formance somewhat, whereas prohibiting gaps alto-
gether results in a decreased performance.

Localization Accuracy with Permutation Tests

Permutation tests were used to obtain more infor-
mation about the significance of observed marker fre-
quencies. Markerwise P values were used to sort markers
by their statistical unexpectedness, not to test the sta-
tistical significance of the findings. The experimental re-
sults obtained with 1,000 random permutations show
that the peaks observed in marker frequencies in the
vicinity of DS locus typically clearly surpass those pro-
duced by background LD. The permutation surface for
a simulated data set with is shown in figureA = 7.5%
3a; figure 3b gives similar information in two-dimen-
sional form. The true DS gene location was at point 50.2,
and the lowest P values, , were obtained aroundP ! .001



Figure 2 The effect of various factors on prediction accuracy. The y axis shows which fraction of simulated data sets is within the error
bound given on the x axis (i.e., [error < x]). The lowest, dotted curve is the prediction accuracy of random, uniform guesses. a, Effect ofy = P
A, the proportion of DS mutation carrying chromosomes. b, Effect of doubled sample size (400 disease-associated and 400 control chromosomes).
c, Effect of corrupted data. d, Effect of missing data. e, Comparison of prediction methods. The three topmost curves have been obtained with
0% corrupted and 0% missing data; the lower curves with 1% corrupted and 20% missing data. f, Effect of pattern search parameters. “HPM
baseline”: haplotype pattern searching as before; “no gaps”: haplotype pattern searching without gaps; “single”: the middle point of single
most strongly associated haplotype without gaps is used for predicting the localization; “long gaps”: gaps of up to three markers allowed, “long
haplotypes”: no length limit on the pattern lengths.
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Figure 3 Permutation tests with a simulated data set with . a, The permutation surface. The height of the surface at pointA = 7.5%
( ) is the marker frequency of marker that has an estimated markerwise P value of . The observed frequency is plotted on the surfacei,p m pi i i

by projecting it from the marker-frequency plane onto the permutation surface. The closer the line gets to the ‘back wall’, the more significant
is the marker frequency. b, Marker frequencies for different P values. The solid line shows the observed marker frequencies in the simulated
data; the dashed lines have been plotted by connecting marker frequencies for which the markerwise P values are the same. c, Marker frequencies
for different P values in an unsuccessful localization. The solid line shows the observed marker frequencies in the simulated data; the dashed
lines have been plotted by connecting marker frequencies for which the markerwise P values are the same. d, The effect of permutation tests
on prediction accuracy, with 100 data sets where . The solid line represents localization accuracy without permutations, and the dashedA = 5%
lines show the prediction accuracy with the smallest marker-wise P value (“min p”), or with the smallest P value at most .01 or .001. If the
smallest P value is 1.01 or .001, no prediction is made at all; the fraction on y axis is computed among the predictions made. The lowest,
dotted curve is the prediction accuracy of random, uniform guesses.

it at markers 46–56. Figures 3a and 3b represent a typ-
ical successful case: the marker frequency is highest close
to the DS locus, and permutation tests confirm this find-
ing. An unsuccessful localization is in turn shown by
figure 3c; the highest marker frequencies and the best
markerwise P value, ∼.01, are obtained for marker 60,
but the true DS locus is at position 95.0.

We performed the following experiments in order to
see if the prediction accuracy can be improved by per-
mutation tests. We predicted the location of the DS gene
to be at the marker with the smallest P value instead of
the most frequent marker. Optionally, given a threshold
for the P value, we made a prediction only if the best P

value was below the threshold (and otherwise replied
“don’t know”). The localization accuracy is somewhat
improved by employing permutation tests (figure 3d,

). The improvement was less evident withA = 5% A =
, and with this modification had practi-7.5% A = 10%

cally no effect. For , again, there is no im-A = 2.5%
provement with the sample size of 100 affected
individuals.

SNP Data

We performed experiments with artificial SNP data to
test the utility of the HPM method with biallelic mark-
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Figure 4 Effect of A, Proportion of DS mutation–carrying chro-
mosomes, in the SNP data.

ers. An increased density of markers was used (3 SNPs
per 1 cM) to maintain the overall information content
roughly at the same level with the microsatellite markers.
A higher density is also motivated by the willingness to
increase the density of markers in an interesting region.
Additionally, it is expected that genomewide scans at
higher densities of SNPs will be possible in the near
future. Missing information was simulated by randomly
removing 12.5% of the alleles. This was done in order
to mimic the effect of haplotyping ambiguities with SNP
markers, expected to occur whenever a family trio, both
parents and the only offspring, are heterozygous in a
given locus. The pattern search parameters were mod-
ified slightly, to account for the higher density of mark-
ers; the maximum length of a haplotype pattern was 21
markers (∼7 cM). The maximum number of gaps was
two, and the maximum length of a gap was one marker.

The results (fig. 4) show that the HPM method per-
forms well with the simulated biallelic data. For A =

, the accuracy is close to that of complete micro-10%
satellite data (fig. 2a), despite the 12.5% of missing data;
with smaller values of A the accuracy drops somewhat
faster than with complete microsatellite data. Overall,
the localization accuracy with 3 SNPs per 1 cM in these
data sets is close to that of a map with 1 microsatellite
per 1 cM.

Real HLA Data

We applied our method to a real data set, consisting
of affected sib-pair families with type 1 diabetes from
the United Kingdom (Bain et al. 1990) that were gen-
otyped for 25 polymorphic microsatellite markers. These
markers covered a 14-Mb region including the entire
HLA complex. The HLA- and loci, locatedDQB1 DRB1
in the center of these 14 Mb, are known to be the pri-
mary constituents of the major type 1 diabetes–
susceptibility locus mapped to this region, designated as

. This data set was originally generated to applyIDDM1
the currently available tools of association fine mapping,
in order to investigate the accuracy this locus could be
mapped with. Using the multiallelic association test Tsp

(Martin et al. 1997), it has been demonstrated that the
HLA- and loci could be mapped with sur-DQB1 DRB1
prising accuracy, despite the tremendous strength of LD
in that area (Herr et al. 2000).

To test HPM in a setting similar in sample size to the
simulated cases, only 200 of the original 385 affected
sib-pair families were used, and one of the affected off-
spring was selected randomly in each family. The control
chromosomes were generated by including only the non-
transmitted alleles or haplotypes. HPM was applied to
this data set using the same parameters as described for
the analysis of the simulated microsatellite data.

The results (fig. 5) demonstrate that the method was

capable of mapping the disease locus to the marker lo-
cated closest to HLA- and , that is markerDQB1 DRB1

, even though background LD in the HLA andD6S2444
the telomeric end of the map was very strong (Herr et
al. 2000). A comparison to the results of the analysisTsp

(Herr et al. 2000) shows that the mapping accuracy was
similar with both approaches even though we used less
information with HPM.

Discussion

We have introduced HPM, a new, nonparametric ap-
proach to LD mapping. We presented experimental re-
sults with realistic, simulated data with both microsat-
ellite and SNP markers, and with real data from a
complex disease in an old nonisolate population. To our
knowledge, this is the first time when data mining has
been shown to be a working approach in LD mapping
with genetic-marker data.

The HPM method seems to offer good possibilities
for fine mapping, for example in proving DS loci when
multiple candidate genes are screened with a dense map
of markers after finding initial positive linkage. Our
results indicate that the proposed method is robust to
missing and erroneous data. It is suitable for application
in complex disease mapping with high etiologic (allelic
and locus) heterogeneity, as it can cope with a high
degree of phenocopies. The power is good even with
small data sets (100 affected and 100 control individ-
uals); however, an increase in sample size (e.g., 200 af-
fected and 200 control individuals) increases the power
considerably, especially if the proportion of mutation
carrying chromosomes (A) is very low. With a moderate
sample size of 200 affected individuals we were able to
reliably localize genes with first-degree relative risks as
low as .l = 1.7

Even though the simulation results are for a popu-
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Figure 5 Results on the real HLA data. a, Marker frequencies and background LD (BGLD), as measured by the markerwise mean of the
10 highest frequencies obtained by 10,000 permutations. b, Negative logarithm of the markerwise P values. The vertical line shows the gene
location. The flat interval of 2log is the upper limit of the score, due to the limited number of permutations. The ratio of the markerp ≈ 9.21
frequency to BGLD (dashed curve) was used for estimating the gene location inside this interval.

lation isolate, the method itself does not require the
study population to be an isolate, as the experiments
with the real data show. At least moderate LD should
exist between consecutive markers near the disease locus
or loci, which means that the average marker distances
in the region to be studied should be small with respect
to the amount of LD in the study population. For a
population isolate with expansive growth through ∼20
generations, as in our simulations, the average micro-
satellite marker distance of 1 cM throughout the area
of interest gave good results. For a typical linkage result,
the area to fine map is 20–30 cM, which would in a
similar setting require the genotyping of 20–30 markers.
To find out which kind of average marker spacing is
needed in different study populations, the power of the
method should be explicitly studied in different situa-
tions. A crude estimate might be obtained by relating
4Nc, the measure for average LD according to Long
and Langley (1999), to the power of the localization.

Current statistical methods for LD/association map-
ping are based on explicit statistical models of LD dis-
tribution and likelihood analysis. If the assumed model
is correct, the statistical approach is more powerful and
is likely to give better estimates of the location. How-
ever, if there is no a priori information about the correct
inheritance model, the model-based approach may be
misleading. The models typically are based on assump-
tions, which may be much too restrictive in complex
disease mapping, about the mode of inheritance, num-
ber, and dominance of the DS loci or the age of the
mutation. The haplotypes considered in the likelihood-
based methods consist of either one marker or a se-
quence of consecutive markers. There are practical rea-
sons for this: explicit statistical modeling is difficult and

computationally heavy, even for these simple cases. Al-
lowing for gaps would only complicate the situation
further. The difficulty of explicit statistical modeling is
also the reason that these methods are more suitable for
monogenic diseases than for complex ones. On the other
hand, the rigid statistical models give possibilities for
constructing confidence intervals for the location and
test statistics for significance testing, which are not
straightforward in our approach.

Topics for Future Work

Complex diseases are a major challenge for gene map-
ping. Most of the genes involved have very small effects.
The diseases are characterized by etiologic heterogeneity;
the disease may result from different combinations of
factors in different families and in different populations.
Environmental factors, gene-environment interactions,
and gene-gene interactions (epistasis) may further com-
plicate the genetic etiology. This heterogeneity is a major
issue when searching for associations between alleles
(haplotypes) and the disease status. The complexity
makes the finding of DS genes very difficult for explicit
statistical modeling approaches, as noted by Terwilliger
and Weiss (1998), for example. The power to detect
minor genes is low, even if the data include hundreds of
families.

Without regard to the yet-unsolved statistical prob-
lems, association studies have recently been proposed as
a powerful approach for detecting the several weak ge-
netic effects which underlie susceptibility to complex dis-
eases (Collins 1995; Lander 1996; Risch and Merikan-
gas 1996). Improved techniques for high-throughput
identification and genotyping of polymorphisms, such
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as SNPs, offer the possibility of using high numbers of
markers in genome screening and candidate-gene scan-
ning in the near future. The sufficient density of such
maps, given the population history of modern human
populations, has been analyzed theoretically (Chapman
and Wijsman 1998; Kruglyak 1999; Long and Langley
1999).

We believe that the approach adopted here may allow
analysis of some of these complex characteristics as well.
As a nonparametric approach, the method has unique
properties compared to other LD methods. For example,
it is conceptually rather straightforward to extend the
algorithm to find several genes simultaneously. The
method was modified to find two genes simultaneously
and was tested using simulated data with two interacting
genes and phenocopies. Both DS loci were reliably lo-
calized (data not shown). The problem of multiple foun-
der haplotypes (allelic heterogeneity in DS locus) is
largely bypassed simply by counting separate patterns
together in the marker scores. The handling of marker
inconsistencies, such as genotyping errors and muta-
tions, might be further improved by allowing approxi-
mate pattern matching in the haplotype pattern discov-
ery step. The proposed method also scales well to large
data sets of biallelic and multiallelic markers.

In addition to genetic marker data, information on
environmental covariates is often collected. These may
include nutritional factors, smoking habits, infections

diagnosed on the individual etc. Quantitative measure-
ments closely related to the disease diagnosis (which of-
ten is only a best agreement with the expert clinicians,
not an obvious dichotomy between healthy and affected
individuals), like immune response measurements in
asthma or serum autoantigens in type 1 diabetes, etc.,
are also often available. These measurements might ac-
tually have a simpler genetic basis than the disease per
se, as the disease state may actually result from very
complicated and heterogeneous processes. Discrete non-
genetic data could be included in the analysis in quite a
straightforward fashion, continuous measurements
should be discretized first. Finally, data-mining methods
might be used as a preprocessing step for more detailed
explicit statistical analysis. For example, the haplotype
patterns might be used as a sample space for the recon-
struction of ancestral haplotypes in DS chromosomes.
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Appendix A

A Lower Bound for Pattern Frequency

Given a 2 2 contingency table of the numbers of disease-associated (A) and control (C) chromosomes either#
matching a pattern (P) or not (N), the test statistic for the disease association of the pattern is defined by2x

2(p 7 p 2 p 7 p ) 7 pAP CN AN CP ,
p 7 p 7 p 7 pA C P N

where is the number of chromosomes with properties i and the number of chromosomes with property i,p j, pij i

and p the total number of chromosomes. Given the number of disease-associated chromosomes ( ), the numberpA

of control chromosomes ( ), and a lower bound x for the test statistic, we can derive a lower bound for thepC

pattern frequency among the disease-associated chromosomes ( ) as follows. Assuming the pattern is disease-pAP

associated, we have . The test statistic is maximized when , implying andp 7 p 1 p 7 p p = 0 p = pAP CN AN CP CP AP P

. Thenp = pCN C

2 2(p 7 p 2 p 7 p ) 7 p (p 7 p ) 7 p p 7 p 7 pAP CN AN CP AP C AP C= =
p 7 p 7 p 7 p p 7 p 7 p 7 (p 2 p ) p 7 (p 2 p )A C P N A C AP P A AP

and
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p 7 p 7 p p 7 p 7 xAP C A> x ⇒ p > .AP
p 7 (p 2 p ) p 7 p 1 p 7 xA AP C A

The situation is symmetric for protective haplotypes, and the lower bound for is obtained by simply swappingpCP

and in the above result. If disease-associated and protective haplotypes are searched for at the same time,p pA C

the smaller of and can be used as a lower bound for , making the implementation slightly simpler.p p pAP CP P

Appendix B

Data Generation

The population generator of Populus simulator pack-
age was used to generate 100 artificial pedigrees that
correspond to the population-specific demographical pa-
rameters in the history (table B1). Each of the resulting
100 very large pedigrees contains all individuals that
have lived in the population since the date of foundation.
Then the chromosome simulator of the Populus package
was used to simulate the inheritance of pairs of homol-
ogous chromosomes within each large pedigree. Finally,
when the inheritance histories of all chromosomal seg-
ments were available, markers were assigned to the orig-
inal founder individuals, which allowed us to unequiv-
ocally determine the alleles of each artificial person in
the current population. A related approach has been
previously proposed for rapid simulations in linkage
analysis (Terwilliger et al. 1993).

In the simulations we assigned a single pair of chro-
mosomes to each founder, and set the genetic length of
the chromosomes to 100 cM for both males and females.
The meiosis was modeled under the assumption of no
chiasma interference, which corresponds to Haldane’s
model.

In our simulations, we used the Finnish Kainuu sub-
population as our model population. We defined the
population to have been founded 500 years ago by a
group of 300 individuals, where the total number of
independent founders was 198, and the remaining 102
initial settlers were their descendants. This serves as a
conservative approximation, since the isolate is esti-
mated to be founded in those times by a relatively small
group of individuals migrating from the south (de la
Chapelle 1993; de la Chapelle and Wright 1998). For
the 100 pedigree replicates, the size of the final popu-
lation varied between 67,467 and 136,613 individuals;
the average size was 101,475, which corresponds well
to the current size of the isolate.

In each simulation, a sample of 100 affected and 100
control individuals was picked by a slightly nontrivial
procedure. Since we wanted to fix the disease model to
a relatively common disease with a dominant model and
high phenocopy rate in respect to any single disease-
predisposing locus, we decided to set the mutation prev-
alence to 6/1,000. Thus, in each simulation, the aim was

to have ∼600 affected mutation carriers in the final pop-
ulation. To compute the mutation source and locus in
a computationally effective way, we first selected 30 ran-
dom points in the 100-cM chromosomal region that
were considered as possible mutation loci. This selection
was repeated in each iteration. After the chromosomal
segment data were generated, the resulting prevalence
for each possible combination of a founder chromosome
and a mutation locus was computed. We then picked a
combination that produced the desired overall mutation
prevalence of 6/1,000 in the final population as accu-
rately as possible. Since there were 198 unrelated foun-
der individuals and 30 possible mutation loci, a total of
11,880 possible source/locus pairs were considered in
each iteration, which turned out to be more than enough
to produce the desired mutation prevalence accurately.
Out of the ∼600 resulting affected carriers, we then
picked random samples of 20, 15, 10, and 5 individuals
to produce mutated chromosome frequencies of A =
∼10%, ∼7.5%, ∼5%, and ∼2.5%. The rest of the af-
fected sample was chosen from noncarrier individuals
to produce the phenocopies. No siblings were allowed
to appear in the samples.

It is well known that in case-control studies, closer
kinship in the affected sample may cause false positive
results because of extra background linkage disequilib-
rium everywhere in the genome (Terwilliger and Weiss
1998; Hovatta et al. 1999). To overcome this problem,
we used family-based pseudocontrol chromosomes. This
was done in practice by taking the alleles in the non-
transmitted chromosomal segments of the parents of
each affected individual and labeling them as control
chromosomes. In each simulation, a total sample of 400
chromosomes was taken, of which 200 were affected
and 200 control.

We treated the haplotypes obtained from the simu-
lator as given, which corresponds to error-free haplo-
typing. (However, this is not in any way a prerequisite
for applicability of the method, as is demonstrated in
experiments with missing and erroneous data.) The en-
tire sampling procedure corresponds to a standard case-
control study setup with a pseudo-control sampling ap-
proach, where a dominant disease with high prevalence
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Table B1

Parameters Used to Simulate Populations

Parameter Valuea

Probability of marriage, male (ages 18–32 years) .9
Probability of marriage, female (ages 17–31 years) .9
Maximum age at pregnancy (years) 44
Initial age structure:

0 years .03
1 years .12
2–5 years .15
6–15 years .24
16–45 years .40
46–75 years .06

Proportion of descendants in initial population (by age):
0–15 years .5
15–20 years .5 r.3b

20–30 years .3r.2
30–50 years .2r0
50–75 years 0

Starting year 1500
Initial population size (in 1500) 300
Expected no. of children, by time period:

1500–1775 5.5
1776–1915 5.5r4.0
1916–2000 4.0r1.6

Immigration rate 0
Probability of death (function of birth year and age):

1400–1750:
0 years .22
1–10 years .10
11–25 years .10
26–35 years .08
36–45 years .15
46–65 years .25
66–85 years .10

1751–1900:
0 years .15
1–10 years .085
11–25 years .085
26–35 years .18
36–40 years .1
41–45 years .05
46–65 years .2
66–85 years .15

1901–2000:
0 years .05
1–5 years .035
6–15 years .005
16–35 years .125
36–65 years .18
66–85 years .605

a Parameter values are functions of year and age of each individual.
b An arrow denotes linear interpolation within the given ranges.

(0.03–0.12) is observed, and the phenocopy rate is high,
but unknown at the time.

To accommodate the fact that ever-increasing inform-
ativeness of marker maps may soon facilitate whole-
genome LD mapping, we used relatively dense and in-
formative marker maps with intermarker intervals of
exactly one cM. Since the usefulness of a marker depends
solely on its informativeness, we did not want to fix the

number of alleles in each marker but instead fixed the
informativeness of every marker to 0.7, as measured by
the polymorphism information content (PIC). Typically,
each generated marker contained 4–8 alleles, whose fre-
quencies were less equally distributed as the number of
alleles increased. The markers were created using a
brute-force algorithm, where large numbers of markers
with variable allele frequencies were produced, but only
the small minority with desired PIC was approve.

Data sets used in this study are available electronically
(see Electronic-Database Information).

Electronic-Database Information

The URL for data in this article is as follows:

“Data mining applied to linkage disequilibrium mapping,”
http://www.genome.helsinki.fi/eng/research/projects/DM/in-
dex.html (for simulated data sets, an implementation of the
algorithm, and more detailed results [for noncommercial
use])
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