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ABSTRACT

Mapping genes for common, polygenic diseases is
challenging due to the number of genes involved. Typi-
cal mapping methods search for one gene at a time, but
their marginal effects may be too weak to be discovered
in isolation. On the other hand, practically all methods
for simultaneous mapping of multiple genes suffer from
an exponential growth of time complexity as the number
of genes grows.

We explore the combination of phenotypic and geno-
typic data in multiple gene mapping. Given a data set
of individuals and observations of several phenotypes, as
well as genetic marker data from the same individuals, our
aim is to discover a set of genetic loci that together explain
the observed phenotypes as well as possible.

We formulate three increasingly complex variants of
the problem. We illustrate the problem by a regularized
linear multiple regression model, where the most impor-
tant components of a least squares solution are output as
the predicted gene loci. Our initial results indicate that al-
ready this simple model can be more powerful than look-
ing for one gene at a time. We discuss the problem vari-
ants and identify research problems for more powerful
methods.

1. INTRODUCTION

The goal of gene mapping is to locate disease suscepti-
bility genes for a given disease. The existence and impor-
tance of a genetic component in the etiology of the disease
has usually already been identified, so the question now is
about where the disease susceptibility gene or genes are
located.

In a typical form of gene mapping, a single phenotype
has been recorded for a set of individuals. This pheno-
type can be simply a dichotomous indicator “diseased” vs.
“healthy”, or it can be a quantitative measurement, such
as blood pressure. Additionally, the individuals are geno-
typed at a number of marker loci. Given these data, the
task is to find those loci that are most strongly associated
with the phenotype.

A related problem is the analysis of candidate genes:
a set of most promising genes identified in gene mapping
studies are genotyped in a subsequent study, and the task

is to identify those candidate genes that actually contribute
to the phenotype.

Diseases are usually complex, i.e., affected by several
genes, as well as by environmental factors. The power to
detect one gene at a time may be weak, as their marginal
effects can be small or even non-existent (Hoh and Ott,
2003; Marchini et al., 2005). Any straightforward gen-
eralization of the basic method to consider several loci at
the same time, instead of just one, has exponential time
complixity: given d, the total number of loci, and k, the
number of loci to be considered in conjunction, there are
O(dk) different combinations of loci to consider. Since
d can be large, in the order of thousands or more, this
approach does not easily generalize beyond small values
of k.

The size of the other important dimension, number of
phenotypes, varies from one to tens. With the advance
of high throughput genotyping technology, large data sets
collected for other purposes than gene mapping, e.g., for
epidemiology, have become more relevant for genetical
studies and gene mapping. These data sets can contain
large numbers of phenotypes related to the same disease,
obtained by clinical tests or questionaries, or extracted
from medical records. Since different genes, all related
to the same disease, are likely to have different effects on
different phenotypes, this rich data could be powerful for
mapping of multiple genes.

In this paper, we consider the problem of identifying
multiple disease susceptibility loci (or quantitative trait
loci) at once. We formulate three different variants of the
problem (Section 2). We then describe a least squares so-
lution to one of them and experimentally compare it to a
single gene approach, to illustrate the nature of the prob-
lem (Section 3). In Section 4 we discuss the described
problems further and identify a number of research prob-
lems. Section 5 contains our conclusions.

2. PROBLEM FORMULATION

Given both phenotypic and genotypic data for a sample of
individuals, the task is to find a model that explains the
observed phenotypes with (a subset of) the genotype data.
As an illustration, in a simple linear model the observed
phenotypes (B) are the product of genotypes (A) and (un-



known) effects of genes (X),

B = AX + noise. (1)

With this formulation, the task essentially is to solve the
equation for X . We will return to the subtleties in the
problem definitions below.

Phenotypes are given in an n × m matrix B, where
the n rows represent individuals and the m columns their
phenotypes. We assume that the phenotypes are related
to the same disease or family of diseases. For instance,
the diagnosis of asthma is based on a number of different
alternative indicators of symptoms, and all these could be
used as phenotypes, as well as, e.g., any other respiratory
symptoms. Genotype data is given as a 0/1 matrix A, with
n rows for the individuals and d columns that correspond
to genetic loci. The genotype data consists of candidate
genes, genetic markers, or haplotypes. Since these all rep-
resent possible disease gene loci, the terms “gene” and
“locus” are interchangable in most of our text.

An assumption is that the same disease, manifested in
a number of phenotypes, is affected by a number of genes,
but these k genes are only a small subset of all d given can-
didate loci. Each of the k true genes typically contributes
to several phenotypes, and conversely any given pheno-
type can be affected by several genes. Each person has
a mutation in zero or more genes, and his or her pheno-
types are the result of these genes, plus a number of other
factors, such as the environment.

In current datasets, the number of individuals, n, is
typically in the order or hundreds, while the number of
phenotypes, m, is in the order of tens. The number of ge-
netic loci, d, can range from tens to thousands depending
on the study. The number of genes with a real effect on
any of the phenotypes is largely an open question, but it
is commonly believed that many complex diseases have
few important genes (less than ten) and more genes with
minor effects.

We next formulate increasingly complex variants of
the multiple gene mapping problem. For convenience, we
describe them using notation from linear algebra; in real-
ity, however, the phenomena cannot be assumed to behave
linearly.

• Problem 1a For the first problem variant we as-
sume that the genotypes in matrix A are obtained
for a set of named candidate genes; each column of
A corresponds exactly (up to genotyping accuracy)
to the presence or absence of a specific allele in a
specific gene.

Given phenotypes B and genotypes A of named
candidate genes, the task is to explain (all) the ob-
served phenotypes in terms of a subset of k can-
didate loci from the whole set of d loci. Assum-
ing that the effects of genes on the phenotypes can
be described with a linear additive model, the task
is to solve X in (1), where X is a d × m matrix
where only k rows have non-zero elements: these
rows give the contributions of the k genes on the
phenotypes.

• Problem 1b In another variant of the first problem,
the available genotype data A consists of alleles of
markers, not specific genes. The closer a marker
is to a disease susceptibility gene, the larger is the
linkage disequilibrium between these, and conse-
quently also their correlation. In this case some of
the columns of A correlate with the presence of an
actual gene.

Formally this variant can be expressed as Prob-
lem 1a. A subtle difference is, however, that in this
case the genotype data A can be considered noisy,
and this can have an influence on the methods for
solving X in (1). This can be viewed as a total
least squares problem (Golub and Van Loan, 1996;
Golub et al., 1999), where an additional goal is to
also estimate the true disease susceptibility gene
genotypes, Â.

• Problem 2 A more challenging problem is to use
only the phenotype data B to simultaneously esti-
mate genotypes at k unspecified gene loci and the
effects of the genes. This corresponds to factoriz-
ing B into A and X so that

B ≈ AX, (2)

where A is a 0/1 genotype matrix of size n × k and
X a gene effect matrix of size k × m. The utility
of this approach is that once the genotypes A have
been estimated, each gene can be mapped individu-
ally in the normal way, i.e., by finding a locus that
tends to occur in those individuals identified by the
corresponding column in A.

Obviously, with Problem 2 we have the least amount
of information at our use, whereas with Problem 1a we
are the most informed. We next address Problem 1a as an
example case, and then return to discuss all the problems.

3. EXAMPLE: LINEAR MULTIPLE GENE
MAPPING FOR PROBLEM 1A

We now illustrate the multiple gene mapping problem by
providing a least squares solution to the problem vari-
ant 1a and by experimentally comparing its performance
to the a single gene approach.

3.1. A least squares solution

Problem 1a is formulated in linear algebra as follows:
given the matrices A and B with dimensions n × d and
n × m respectively, find the d × m matrix X that solves
the problem

AX = B. (3)

When n > d the system is overdetermined and usually
has no exact solution, so instead we solve the least squares
problem

min
X

‖AX − B‖2. (4)



More commonly this is expressed in the vector form: for
each column bj

x
·j = arg min

x
‖Ax − bj‖2. (5)

Here we denote the column vectors of the matrix X by
x
·j and the rows by xi·. For details on the solution of the

least squares problem see e.g. Golub and Van Loan, 1996.
For ill-conditioned problems, where the columns of A are
nearly dependent, this is very sensitive to noise. The stan-
dard way to overcome this problem is to use some form
of regularization. The most common form is Tikhonov
regularization (Tikhonov and Arsenin, 1977; Hanke and
Hansen, 1993), which in the general case takes the fol-
lowing form: for each column bj ,

x
·j = arg min

x
(‖Ax − bj‖

2

2
+ λj‖x‖

2

2
). (6)

Here the regularization parameter λj controls the size of
the solution. The solution xλ

·j to (6) solves the problem

(AT A + λjI)x = AT bj . (7)

Various methods for choosing the optimal regularization
parameter exist. One way is to use generalized cross-
validation (GCV), see e.g., Hansen, 1994, and references
therein. If there is no reason to expect the optimal reg-
ularization parameter to differ from column to column, a
reasonable approach is to use the mean of the λj obtained
by GCV for different columns as the regularization pa-
rameter of the whole problem.

Ideally our solution X is a d × n matrix, the elements
of which give the contribution of each gene to each phe-
notype. Thus, only the k rows corresponding to the true
genes have elements that significantly differ from zero.
We can identify the important genes by looking at the
norms of each row xi· of X .

A baseline against which to compare the above
method is provided by the obvious approach of simply
considering one gene at a time and testing how well it ex-
plains the phenotype data with no interaction with other
genes. This corresponds to replacing the matrix A in (4)
by each column aj of A one at a time, and solving for
xi·, where each 1×m vector xi· corresponds to one gene.
This corresponds to simply taking the average phenotype
vector of those individuals carrying gene i. Unlike in the
case described above, the vectors xi· do not directly tell us
how the genes contribute to the phenotype. Still, a com-
parison of vectors xi· indicates relative strengths of genes
on phenotypes. Again we can order the xi· according to
their norms, and select as significant the genes with the
largest norms.

3.2. Experiments

We next describe experimental results with the above de-
scribed least squares method. We use synthetic phenotype
data, generated with a linear model involving a number
of disease susceptibility genes. Given the occurrence vec-
tors of these real genes plus a large number of irrelevant

Parameter Values
k, number of true genes 1 – 30
d, total number or loci 50 – 2000
m, number of phenotypes 1 – 20
n, number of individuals 50 – 1000
fraction of unobserved genes 0 – 90%
noise/signal ratio 0 – 300%

Table 1. Parameter value ranges in simulations

candidate genes, we measure the power of the method to
discover the correct genes among all genes.

Data simulation The synthetic genotype and pheno-
type data are generated under the following assumptions:
(1) All genotypes are mutually independent and they have
frequency 0.3, i.e., the genotype matrix A is a random 0/1
matrix of size n × d with 30% of ones. (2) The effects
of true disease susceptibility genes on the phenotypes are
non-negative and mutually independent, i.e., the gene ef-
fect matrix X is a non-negative random matrix of size
d × m. In our experiments, the elements of the k non-
zero rows of X are initially drawn uniformly from [0, 1].
To simulate genes of different importances while avoiding
unnecessary randomness in the experiments, the effects
of true genes (rows of X) were then weighted by values
1/k, ..., k/k = 1. (3) Each observed phenotype vector is
the sum of the effects of the genes that the person has plus
Gaussian noise, i.e., B = AX + noise.

Probably none of the above assumptions is fully real-
istic. A particularly strong assumption is the use of a sim-
ple additive model of gene effects: in reality, there can be
complex interactions between genes, and between genes
and environmental factors. For Problem 1b another se-
vere assumption would be that the genotype matrix has no
noise.

We generate data using wide ranges of parameters (Ta-
ble 1). In each setting, we simulate 100 independent data
sets and report the average results. Despite our strong as-
sumptions we believe this data and the range of experi-
ments is indicative of the nature of the problem.

Evaluation methodology We evaluate the success of
the method by measuring how well the k true disease sus-
ceptibility loci rank when there are a number of irrele-
vant loci included. This corresponds to the situation where
there is a large number of candidate loci, and the task is
to identify a small subset that is likely to include the true
ones.

Using the least squares solution, we rank the loci i
(row xi·) by ‖xi·‖2, the Euclidean norms of their effects
on the phenotypes. In the optimal case, the true loci are
the k best ranking ones. As a measure of the quality of the
result, we use the fraction of true k loci among the best
ranking k loci. We will later briefly consider methods for
choosing a good value for k. Additional information about
the quality of the result could be obtained by comparing
the estimated gene effects (rows xi·) to the real effects
used when simulating the data. This is, however, of sec-
ondary interest: the primary goal is to identify a small set



Parameter Setting A Setting B
k, number of true genes 5 10
d, total number or loci 500 1000
m, number of phenotypes 10 5
n, number of individuals 500 300
fraction of unobs. genes 0% 20%
noise/signal ratio 5% 50%

Table 2. Fixed parameter settings (Figure 1)

of loci for further investigation.
We empirically evaluate the effect of one parameter

of Table 1 at a time, while keeping all other parameters
constant. For the constant parameters we fix two sets of
values (Table 2). In Setting A, the task is to find k = 5 true
disease loci from d = 500 loci in total. There are m = 10
phenotypes and the number of individuals is n = 500.
There is modest noise; the variance of phenotype noise is
5% of the variance of the noiseless ideal phenotypes.

Setting B is designed to be very challenging, and it
is more difficult in terms of all our parameters. In par-
ticular, in Setting B, 20% of the true genes are unob-
served, i.e., they are not included in the genotype ma-
trix A. This should make the task of multiple gene map-
ping more difficult—but also more realistic, since in real
applications there are likely to be numerous factors that
are not included in the data nor the model.

Results An overview of the fraction of highly ranked
true genes is given in Figure 1. Each of the panels shows
the power of the method as a function of one of our param-
eters. Results for Setting A are drawn with solid lines, re-
sults for Setting B with dashed lines; thick (blue) lines are
for the multiple gene approach (regularized least squares
method) and thin (red) lines for the baseline of finding a
single gene at a time. For a reference of how the fixed val-
ues in Settings A and B relate to the range of values tested
in each subfigure, results in Settings A and B are denoted
by an asterisk and a plus, respectively.

We make two general observations. First, in most of
the tests the multiple gene approach achieves very good
results in Setting A, ranking all or almost all of the k true
genes among the best k genes. Setting B is much more
challenging, and powers are generally between 0.5–0.8.
Second, in the two different settings and over the relatively
wide ranges of parameter values, the multiple gene ap-
proach outperforms the single gene approach, except for
high fractions of unobserved true genes.

One of the most striking results is the effect of the
number k of true genes on the power to detect those
genes (Figure 1.A). Since the magnitudes of gene effects
are (deterministically) uniformly distributed in [1/k, 1],
there will be more very minor genes when their number
is larger, and the task of finding all of them becomes more
difficult. This seems true especially if genes are searched
for individually: the single gene approach experiences a
clear drop also for the easier setting A as the number of
genes increases.

The total number of genes (Figure 1.B) has a relatively

Parameter Setting C
k, number of true genes 10
d, total number or loci 100
m, number of phenotypes 10
n, number of individuals 120
fraction of unobs. genes 0%
noise/signal ratio 10%, 100%

Table 3. Parameter settings for norm plots (Figure 2)

slight adverse effect on the power, as does the fraction
of unobserved true genes (Figure 1.C). Unobserved genes
theoretically have no effect on the single gene approach,
and deviations from a horizontal line are due to random
effects.

Noise obviously has an adverse effect (Figure 1.D),
but not a very strong one. The variance of noise has to
be larger than the variance of signal to have a clear effect.
The multiple gene approach seems to suffer slightly more
from noise, so that with signal-to-noise ratio 1/3 (“300%”
in the figure) the two approaches perform equally well.

The two parameters, n and m, that govern the amount
of data (dimensions of matrix B) give interesting results.
First, in our settings, increasing the number m of phe-
notypes beyond 5 does not affect the results much (Fig-
ure 1.E). On the other hand, increasing the number n of
individuals steadily improves the results throughout the
whole range (Figure 1.F). Note that here we have occa-
sionally violated the assumption n ≥ d, but for our prob-
lem this does not seem to affect the performance of the
regularized least squares method.

As an example of how the multiple gene and single
gene approaches rank loci, Figure 2 shows the Euclidian
norms ‖xi·‖2 of the estimated gene effects on the phe-
notypes, sorted in descending order. For illustration, the
data comes from Setting C with a smaller number genes
(k = 10, d = 100; Table 3). The left column of the figure
shows results with the baseline of finding genes individ-
ually, the right column with the multiple gene approach
(regularized least squares method).

In this data set, three of the true genes rank badly in the
single gene approach, largely regardless of the amount of
noise. In the multiple gene approach, adding noise seems
to affect the weakest genes more gradually.

The norms of gene effects could potentially be used
in some cases to estimate the number k of true disease
susceptibility genes. Based on Figure 2, in the case of the
multiple gene approach it is fairly easy to get a reasonable
estimate for k by looking at where the norms level off.
The situation is less clear for the single gene approach,
where the distribution of norms is much smoother.

The unregularized least squares solution has a poor
performance, unless there are enough individuals and no
or very little noise (results not shown).

Conclusions from results The results indicate that
already the simple linear multiple regression model as a
multiple gene approach can be more powerful than a sim-
ilar single gene approach. However, since the data was
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Figure 1. Fraction of highly ranked real genes as a function of various parameters.

generated with the same model that was used to analyze
it, these conclusions are at most indicative. On the other
hand, no gene-gene interactions were simulated, making
the task easier also for the single gene approach.

Our goal here has been to illustrate the problem by ap-
plying a relatively simple multiple gene mapping method
to it, and comparing it to the single gene approach. Under
our assumptions—which we know are not fully realistic—
it seems that when possible, increasing the number of indi-
viduals is more useful than increasing the number of phe-
notypes, and that increasing the total number of loci only
has a modest adverse effect. The multiple gene approach
seems more powerful, especially for large numbers of true
genes in otherwise easier settings. As expected, and illus-
trated by the norms in Figure 2, the single gene approach
has more problems identifying genes with small effects.

4. RESEARCH TOPICS

We now move on to discuss research topics related to solv-
ing the three problem variants we introduced. Many meth-
ods for multivariate quantitative trait loci (QTL) analysis
(essentially our Problems 1a and b) based on linear mod-
els have already been proposed (Jiang and Zeng, 1995;
Henshall and Goddard, 1999; Caliński et al., 2000; Knott
and Haley, 2000; Bjørnstad et al., 2004). To the best of
our knowledge, Problem 2 has not been addressed in the
literature.

Gene selection For Problems 1a and b, a central task
is the identification of the set of true disease susceptibil-
ity genes underlying the observed phenotypes. The sim-
plest possibility in our example least squares model is to
take the k best ranking loci, where k is a parameter given
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black, genes with no effect in gray.

by the user. Automatic selection of a suitable k could be
based on an analysis of the norms of the effect of genes,
as mentioned in the previous section.

It is probably more powerful to choose k as part of the
model fitting process. Stepwise methods for fitting a mul-
tiple linear model produce a nested set of models; in each
step either the variable (gene) that best explains the resid-
ual is added to the set of independent variables (forward
selection), or the least significant independent variable is
removed from the set (backward elimination).

The least squares method without regularization is
equivalent to maximizing likelihood over X in a model
with Gaussian noise in the observed phenotypes. Regular-
ization adds a prior Gaussian distribution for X , and the
task is then equivalent to finding the Maximum a Posteri-
ori solution for X , where the regularization parameter λ
determines the ratio between the variance of noise and the
variance of the prior distribution. With the probabilistic
interpretation, statistical criteria (e.g., AIC (Akaike, 1973)
or BIC (Schwarz, 1978)) for model selection can be ap-
plied.

Improvements to the least squares model It is rel-
atively easy to allow for a mixture of quantitative and di-
chotomous phenotypes in the least squares model by using
logistic regression for the dichotomous variables. How-

ever, when dichotomous variables are included, the abso-
lute values of the variances of the observed phenotypes
and the prior of X become fixed.

Finding candidate loci In a genomewide analysis
without any prior candidate genes (Problem 1b), the geno-
types are typically obtained for a large number of marker
loci. Because of linkage disequilibrium, markers can be
used as surrogates for nearby genes. Haplotypes of sev-
eral adjacent markers are more informative—and poten-
tially better surrogates—than alleles at a single marker. It
is possible to enumerate all haplotypes with some reason-
able constraint on their length occurring in the genotype
data with at least at a given threshold frequency (Toivo-
nen et al., 2000).

This set of haplotypes may be very large, and it may
be necessary to prune it further. One can reject haplotypes
with weak individual phenotypic association prior to fit-
ting the linear model, with the risk of losing low marginal
effect loci. Another option is to prune similar haplotypes,
and so find a smaller set of haplotypes that represents well
the whole (analyzed area of the) genome as well as differ-
ent distributions.

Matrix factorization The multiple gene mapping
problem is considerably more challenging if also the
genotype matrix A is unknown (Problem 2). Matrix fac-



torization methods such as Nonnegative Matrix factoriza-
tion (NMF) (Lee and Seung, 2001) or Independent Com-
ponent Analysis (ICA) (Hyvärinen et al., 2001) may be
applied. NMF assumes non-negativity of the matrices,
which may be a useful constraint. Without loss of gen-
erality, we can assume that phenotypes are non-negative;
a usual assumption—although not strictly necessary—is
that that mutations in genes (1’s in matrix A) predispose
to the disease and higher values of phenotypes.

Neither NMF nor ICA as such account for the binary
nature of the genotype matrix A, and modifications for
this task would be needed. As we expect the matrices A
and B to be fairly sparse, that is to have a low proportion
of non-zero elements, a sparse NMF approach (Hoyer,
2004) may prove an attractive alternative.

Stability and uniqueness of the results For any
method to solve the problems, it would be useful to be able
to assess how stable or unique the solution is. If equally
good results can be obtained with different sets of genes or
different phenotype effects, is it because there are no clear
gene effects, or because they can be explained in different
ways?

For instance, collinearity is a potential problem. If
there are strong correlations between columns of A, the
corresponding rows of X are unstable. The issue is more
serious in the case where matrix A consists of a large
number of haplotype patterns. Bjørnstad et al., 2004, ad-
dressed the problem using partial least squares regression,
in which the matrix is regressed onto a smaller set of un-
correlated columns. Another option is using a stepwise
method with a constraint limiting the correlation between
the independent variables. The combinatorial nature of
the problem calls for use of a less greedy algorithm, e.g.,
beam search.

Non-linear methods Our discussion so far has been
limited to the case where each gene has an independent
linear contribution to the phenotypes. This is not a realis-
tic assumption for the gene effects—even if such models
may sometimes be sufficient for finding genes.

Pairwise interactions could be easily incorporated, but
with a considerable computational cost because the num-
ber of possible interactions is quadratic in the number of
loci. Considering only interactions within the already se-
lected genes is more affordable, but some gene effects
might be only observable through the interactions and
such genes would be missed. An intermediate alternative
is to first find all loci with individual phenotypic effect
meeting some low threshold, and then considering all pair-
wise interactions within this reduced set of loci (Marchini
et al., 2005; strategy III).

A very liberal model of arbitrary gene interactions
would allow the effects of all gene combinations to be
mutually independent. Problem 2 would then reduce to
clustering. Namely, given k there are 2k different gene
combinations (of which some maybe do not occur in the
data). Assuming individuals with a given combination are
relatively homogeneous, the task now is to find (at most)
2k clusters from the phenotype data B. This connection to

clustering is interesting but not very useful as such: there
is no direct way to assign any particular subsets of the
k genes to the clusters. Suitable constraints on the clus-
ters and the related genes, such as requiring that adding
a gene never decreases the expected phenotype values,
might help finding a clustering that is more likely to cor-
respond to carriers of different sets of genes.

5. CONCLUSION

Simultanous mapping of multiple genes, using a combina-
tion of phenotypic and genotypic data, can be necessary
for the localization of genes with small or non-existing
marginal effects. In this paper we formulated three vari-
ants of the multiple gene mapping problem. We illus-
trated the problem by developing a regularized linear least
squares solution to one variant, and by experimentally
comparing it to the single gene approach. Our simula-
tions were simple, but they demonstrate how a multiple
gene approach can be more powerful in detecting genes
with small effects.

We discussed several research issues related to the
multiple gene mapping problem and identified a number
of research opportunities potentially leading to more pow-
erful mapping methods. We believe that significant ad-
vances can be made in this problem.
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