
Data Min Knowl Disc (2008) 17:3–23
DOI 10.1007/s10618-008-0106-1

Finding reliable subgraphs from large probabilistic
graphs

Petteri Hintsanen · Hannu Toivonen

Received: 19 June 2008 / Accepted: 20 June 2008 / Published online: 9 July 2008
Springer Science+Business Media, LLC 2008

Abstract Reliable subgraphs can be used, for example, to find and rank nontrivial
links between given vertices, to concisely visualize large graphs, or to reduce the size of
input for computationally demanding graph algorithms. We propose two new heuris-
tics for solving the most reliable subgraph extraction problem on large, undirected
probabilistic graphs. Such a problem is specified by a probabilistic graph G subject
to random edge failures, a set of terminal vertices, and an integer K . The objective is
to remove K edges from G such that the probability of connecting the terminals in
the remaining subgraph is maximized. We provide some technical details and a rough
analysis of the proposed algorithms. The practical performance of the methods is
evaluated on real probabilistic graphs from the biological domain. The results indicate
that the methods scale much better to large input graphs, both computationally and in
terms of the quality of the result.

Keywords Link discovery and analysis · Graph mining · Graph visualization ·
Reliability

1 Introduction

Consider information search or discovery in a large graph of concepts and their
weighted relationships. The user initiates a query by specifying some concepts (“search

Responsible editors: Walter Daelemans, Bart Goethals, and Katharina Morik.

P. Hintsanen (B) · H. Toivonen
Helsinki Institute for Information Technology, Department of Computer Science,
University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland
e-mail: petteri.hintsanen@cs.helsinki.fi

H. Toivonen
e-mail: hannu.toivonen@cs.helsinki.fi

123

4 P. Hintsanen, H. Toivonen

terms”), and wishes to obtain other concepts and relationships that are related to the
search concepts.

An application example is in analysis of biological information, conveniently
represented as a graph of biological concepts (genes, proteins, tissues, phenotypes,
etc.) and their relations, often uncertain since based on statistical or computational
predictions. For instance, imagine a life scientist has arrived at a novel hypothesis
that a particular gene might have an effect on the phenotype she is studying. A search
engine we envision would now allow the scientist to search for information connecting
the gene and the phenotype, in order to find possible evidence for the hypothesis, or
to discover more detailed hypothesis about the mechanisms of the relationship.

The search problem can be formulated as a task of finding a small subgraph, of
some limited size, of maximal relevance to both search terms (Faloutsos et al. 2004).
For probabilistic graphs, a natural choice for defining the relevance of a subgraph
is to measure the probability (reliability) that the search terms are connected in the
subgraph, taking into account the uncertainty of edges (Hintsanen 2007; De Raedt
et al. 2008). Roughly speaking, the resulting subgraph is more likely to contain strong
edges, shorter paths, and independent paths; on the other hand, edges or paths that add
little to the connectivity of the search terms are not likely to be included, reflecting the
notion of relevance. Importantly, since the definition favors robust subgraphs and thus
alternative paths, the results have an implicit bias towards graphs with more variety
and less redundancy—also a desirable feature for information search and data mining.

Extracting a subgraph of maximal reliability is a fundamental task. In the search
problem described above, it can be used to find and rank search results. Given that the
search is non-trivial and that the results often contain unobvious, indirect relationships,
it clearly is also a data mining problem. Subgraph extraction is useful for visualization
of large graphs, and it can be used as a preprocessing step to reduce the amount of
data for network analysis methods that do not scale well.

We use subgraph extraction as a component in Biomine1, a search engine prototype
for information discovery in biological databases. Biomine currently integrates and
indexes information from eight major databases (Entrez gene, UniProt, Gene Ontol-
ogy, OMIM, NCBI HomoloGene, InterPro, STRING, and KEGG) and consists of
about 1 million vertices and 6 million edges.

In this paper, we address the problem of extracting a maximally reliable subgraph.
We next present the problem more formally and then outline the contributions of this
article.

2 The most reliable subgraph problem

We use standard probabilistic graphs. Let G = (V, E) be a graph, where V is the set
of vertices, E ⊆ V ×V is the set of edges, and each edge has an associated probability
pe. The interpretation is that edge e ∈ E exists with probability pe, and conversely e
does not exist, or is not true with probability 1− pe. Edges are mutually independent.

1 http://biomine.cs.helsinki.fi.

123

http://biomine.cs.helsinki.fi

Finding reliable subgraphs 5

Given two vertices s, t ∈ V , the (two-terminal network) reliability R(G, {s, t})
of G is defined as the probability that there exists a path (a sequence of true edges)
between s and t in G. A classical application of reliability is in communication net-
works, where each communication link (edge) may fail with some probability. The
reliability then gives the probability that s and t can reach each other in the network.
A more recent example is in analysis of uncertain information in biological databases
(Sevon et al. 2006): biological concepts s and t are indirectly related if there exists a
chain of indirect links between them.

The problem of finding the most reliable subgraph (MRSP) was introduced recently
(Hintsanen 2007). Given a probabilistic graph G, a set of terminals vertices U ⊂ V ,
and a positive integer K , 1 ≤ K ≤ |E |, the task is to find a subgraph H ⊂ G con-
necting the terminals in U , such that H has |E | − K edges and a maximal reliability
with respect to the terminals.

We focus on the undirected, two-terminal variant of the MRSP, where G is undi-
rected and U = {s, t}. While the problem above is well-defined for larger sets of
terminals (find a subgraph that connects all terminals), some modifications may be
more useful in practice. For any number of terminals, the problem may be unsolv-
able with the defined number of edges. For more than two terminals, a more use-
ful definition of the problem would try to maximize those connections that can be
made, rather than giving up completely. This is, however, outside the scope of this
paper.

The MRSP is an inherently difficult problem: efficient solutions are available only
for restricted classes of graphs, but cases on general graphs are most likely intractable
(Hintsanen 2007).

Notation Let G be a graph. We denote the number of vertices in G by |G|, and the
number of edges in G by ‖G‖. The degree of a vertex v is denoted by deg(v), and
the set of edges adjacent to v by adj(v). For a given tree T and its vertex v ∈ T , we
denote the parent of v by par(v), and the set of children of v by ch(v).

The union between two graphs G1 = (V1, E1) and G2 = (V2, E2) is a new graph
H = G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). Other set operations for graphs are defined
analogously. For notational convenience, we treat paths and edges as graphs in set
operations, making it notationally easy, e.g., to add a path P to a graph G by writing
simply G ∪ P .

A path with endpoints u and v is said to be a u–v-path. Finally, we denote the
(two-terminal) reliability of G by R(G), and for the sake of simplicity, we do not
usually mention terminals explicitly as they are clear from the context.

Contributions In this paper, we propose two efficient heuristics, BPI and SPA, for
the two-terminal MRSP on general, undirected graphs. BPI is based on simple use of
best paths to span a subgraph, whereas SPA involves a more elaborate construction
of series–parallel graphs. Unlike previous methods that prune the original graph until
it reaches the given size, the proposed methods are based on greedy strategies for
incrementally constructing the subgraph. These strategies result in methods that are
much less sensitive to the size of the original graph. We provide some technical details
and a rough analysis of the algorithms. We also evaluate the proposed methods on

123

6 P. Hintsanen, H. Toivonen

a number of real test cases from the biological domain. The results indicate that the
proposed methods scale much better to large input graphs, both computationally and
in terms of the quality of the result.

3 Related work

The above formulation for the most reliable subgraph problem was introduced by
Hintsanen (2007). A similar problem was introduced by De Raedt et al. (2008) for the
compression of ProbLog theories, essentially a first-order logical form of the same
problem. Both problems can be seen as instances of the generic connection subgraph
problem introduced by Faloutsos et al. (2004).

Greedy heuristics were proposed by Hintsanen (2007) and De Raedt et al. (2008)
for pruning the original graph to the desired size. These methods estimate for each
edge e ∈ E the effect of its removal, Rd(e) = R(G) − R(G − e), also known as
Birnbaum reliability importance for disconnection (Birnbaum 1969). They then pro-
ceed by removing least relevant edges. They apply two extreme variants: one removes
an edge at a time and re-estimates edge relevances after each removal (De Raedt et al.
2008), the other does not re-estimate relevances, but finds and removes edges with
zero relevance (Hintsanen 2007).

Obviously, the first, iterative variant usually gives a better result, but at a higher
computational cost. Given that accurate estimation of the reliability is not easy in itself,
a repeated computation of the reliability of large graphs is prohibitive. Approaches
that avoid this largely redundant computation have a better behavior. The approach
adopted in ProbLog theory compression (De Raedt et al. 2008) uses binary deci-
sion diagrams (BDD) (Bryant 1986) to compute the reliability. While the cost of
constructing the BDD for the original graph is high, this BDD can be used very effi-
ciently to compute edge relevances during the process of pruning edges. Unfortunately,
the time to construct a BDD can be unpredictable, and is prohibitive for very large
graphs.

We next describe in some detail the method (“Monte Carlo Pruning”, Algorithm 1)
implementing the other extreme approach (Hintsanen 2007). First, edge relevances are
estimated by a Monte Carlo simulation. A large number of non-probabilistic graphs
are generated by randomly deciding for each edge whether it is in the graph or not.
Edge relevance Rd(e) is then estimated for each edge as the fraction of graphs where
removing e disconnects s and t . Next, the estimates are sorted into ascending order:
now the least critical edges for the connection are at the top of the sorted list. In order
to remove K edges from the graph, one could just remove the first K edges on the
list. However, it is beneficial to do this iteratively by removing one edge at a time,
and check at each iteration if there are any edges with a non-terminal endpoint of
degree one. Such edges have zero relevance as they do not occur on any acyclic path
connecting the terminals, and are removed first.

While Faloutsos et al. (2004) describe the connection subgraph problem in a generic
form, they also propose to model the graph as an electrical resistor network, where the
delivered current between terminals s and t is to be maximized. The goals are very
similar to ours, but the assumptions made by the model are quite different.

123

Finding reliable subgraphs 7

Algorithm 1 Monte Carlo pruning (MCP)
Input: Probabilistic graph G, integer K
Output: Subgraph H ⊂ G such that ‖H‖ = ‖G‖ − K
1: Generate randomly a large number of non-probabilistic graphs from G
2: for all e ∈ E do
3: C[e] ← MC-estimate of R(G − e)
4: Sort table C into descending order
5: H ← G
6: while K > 0 do
7: while there exists a vertex v ∈ H , v �∈ {s, t} such that deg(v) = 1 do
8: Remove adj(v) and v from H
9: K ← K − 1
10: if K = 0 then
11: return H
12: Remove the first element (edge) e from C
13: Remove e from H
14: K ← K − 1

4 Algorithms

Our objective is to solve the MRSP efficiently on large graphs. In this section, we de-
scribe two new methods, “Best Paths Incremental” (BPI) and “Series–Parallel
Augmentation” (SPA), for the problem. Both methods are based on incremental
approaches.

4.1 BPI: An incremental algorithm using best paths

The “Best Paths Incremental” algorithm (Algorithm 2) is based on a simple idea: find
the most probable, or best paths between the terminal vertices s and t , and let them
span a subgraph. The BPI algorithm adds best paths to the solution until it has at least
‖G‖ − K edges. In order to have exactly ‖G‖ − K edges, it then calls Monte Carlo
Pruning to remove the possible excess edges.

The number of paths needed to span a subgraph of the desired size depends on the
structure of G. We used initially k0 = 2 · (‖G‖ − K) best paths; this number was
chosen experimentally, and it usually gave a sufficient number of paths. In those cases

Algorithm 2 Best paths incremental (BPI)
Input: Probabilistic graph G, integer K
Output: Subgraph H ⊂ G such that ‖H‖ = ‖G‖ − K
1: H ← ∅
2: k ← k0 {the initial number of best paths looked for}
3: while ‖H‖ < ‖G‖ − K do
4: Let P be the set of k most probable s–t-paths, arranged in descending order of probability
5: while ‖H‖ < ‖G‖ − K and P �= ∅ do
6: Remove the first element (path) P from P
7: Add P to H
8: k ← k · k1
9: Monte Carlo Pruning(H , ‖H‖ − ‖G‖ + K)

123

8 P. Hintsanen, H. Toivonen

where there are not enough paths to span a subgraph, the algorithm is restarted with a
larger number k · k1 of paths. In our experiments, we set k1 = 2.

Best paths can be found by any k shortest paths algorithm, by simply transforming
edge probabilities to edge weights: we = −log(pe). A multitude of polynomial
time algorithms for finding k shortest paths have been proposed in the literature
(Eppstein 1998; Roditty 2007; Hershberger et al. 2007). For our experiments, we have
implemented a straightforward extension to Dijkstra’s algorithm for finding k shortest
simple paths between two vertices s and t . Instead of maintaining a single shortest
s–v-path for each vertex v ∈ V , we keep a record of k shortest s–v-paths. The time
complexity of our implementation is O

((
k2|V |2 + k|V ||E |) log k|V |). This could be

improved to O
(
k|V |(|E | + |V | log |V |)) by Lawler’s algorithm (Lawler 1972). With

our implementation, the total time complexity of the BPI (excluding the last MCP call)
is bounded by O

(
(|E | − K)(k2|V |2 + k|V ||E |) log k|V |), under the assumption that

the chosen number of paths k is sufficient to span a subgraph of desired size.
Finally, note that the algorithm adds paths blindly in the sense that their effect on

the reliability is not evaluated. A greedy version would produce better results, but the
cost of repetitive evaluation of reliability could be prohibitive.

4.2 SPA: An incremental algorithm using series–parallel graphs

The next algorithm is based on direct optimization of the reliability of the result
subgraph H in a greedy, iterative manner. The cost of evaluating reliability is greatly
reduced by constructing series–parallel graphs, a restricted class of graphs for which
the reliability can be evaluated very efficiently (Colbourn 1987). There are various
definitions for directed and undirected series–parallel graphs in the literature. For our
purposes, the following recursive definition using composition rules is useful (Valdes
et al. 1982):

Definition 1 The class of (undirected, two-terminal) series–parallel graphs is defined
by the following rules:

1. A probabilistic graph with two vertices s and t joined by a single edge is series–
parallel with terminals s and t .

2. If G1 and G2 are series–parallel graphs with terminals {s1, t1} and {s2, t2}, then so
is the multigraph H = G1 ∪ G2 constructed by one of the following operations:

(a) Identify t1 with s2, and let {s1, t2} be the terminals of H (series composition).
(b) Identify s1 with s2 and t1 with t2, and let {s1, t1} be the terminals of H

(parallel composition).

In our algorithm, the subgraph H is first initialized to a single s–t-path; for exam-
ple, the most probable path. Then H is trivially series–parallel. Next, we expand H
by adding augmenting paths:

Definition 2 Let G be a graph, H a subgraph of G, and {u, v} two vertices of H . Let
P ⊂ G be a u–v-path. Then P is an augmenting path of H if and only if H∩P = {u, v}.
In other words, augmenting paths are paths between two vertices of H that visit vertices
only from G \ H , except for their endpoints.

123

Finding reliable subgraphs 9

Algorithm 3 Series–parallel augmentation (SPA)
Input: Probabilistic graph G, integer K
Output: Subgraph H ⊂ G such that ‖H‖ = ‖G‖ − K
1: Let H be the most probable s–t-path in G
2: while ‖H‖ < ‖G‖ − K do
3: Let U be the set of connectible vertex pairs
4: if U = ∅ then
5: return H
6: rmax ← 0
7: for all (u, v) ∈ U do
8: Let P be the most probable valid augmenting path between u and v

9: r ← R(H ∪ P)

10: if r > rmax then
11: rmax ← r
12: P∗ ← P
13: Add P∗ to H
14: Monte Carlo Pruning(H , ‖H‖ − ‖G‖ + K)

Since we restrict H to be series–parallel, we cannot use every possible augmenting
path, but only those paths P for which H ∪ P is series–parallel. We call such paths
valid, and their endpoints connectible. Let P be a set of valid augmenting paths of H .
As H ∪ P is series–parallel, we can efficiently decide which path gives the maximum
increase in reliability, i.e., find P∗ = arg maxP∈P R(H ∪ P).

The “Series–Parallel Augmentation” algorithm (Algorithm 3) now simply greed-
ily adds the best valid augmenting path P∗ to H until the required number of edges
has been reached, or there are no valid paths available. Finally, it calls Monte Carlo
pruning to remove the possible excess edges.

A problem with series–parallel graphs is that they can be too restricted to produce
good subgraphs. To alleviate this problem, we can produce several different smaller
series–parallel graphs and output their union, which is not necessarily series–parallel.
For example, consider a case where the first few iterations in Algorithm 3 quickly
grow the reliability of the subgraph H1, but the rest of the iterations give only a
marginal increase to the reliability of H1. In such case, it can be beneficial to stop
the algorithm and start over using a different initial solution P �⊂ H1 to produce
another subgraph H2. Finally, we simply combine the solutions to get a final result
H = H1 ∪ H2.

Next, we modify Algorithm 3 to implement these ideas (Algorithm 4). First,
building a series–parallel graph H is stopped as soon as R(H ∪ P∗) < C · R(H)

for a given constant C > 1, where H is the result subgraph and P∗ is the optimal
augmenting path. Second, a new initial solution P �⊂ H is chosen and a new series–
parallel subgraph H ′ is grown. The choice P �⊂ H guarantees that the new subgraph
is not included in the current partial solution, ensuring an increase in the size of the
result, introducing variance, and in effect leading to a non-series–parallel end result.
We always choose the most probable such path P from the set P of the k most probable
s–t-paths in G.

The number of initial solutions needed to construct a subgraph of the desired size
depends on the structure of G and the chosen constant C . With larger values of C ,
more initial solutions are needed. We used initially k0 = ‖G‖ − K best paths, which

123

10 P. Hintsanen, H. Toivonen

Algorithm 4 Series–parallel augmentation with multiple initial solutions
Input: Probabilistic graph G, integer K , real number C > 1.
Output: Subgraph H ⊂ G such that ‖H‖ = ‖G‖ − K
1: H ← ∅
2: k ← k0 {the initial number of best paths used as initial solutions}
3: Let P be the set of k most probable s–t-paths
4: while ‖H‖ < ‖G‖ − K do
5: Let P ∈ P be the most probable path such that P �⊂ H
6: if P = ∅ then {increase k and restart}
7: k ← k · k1
8: Let P be the set of k most probable s–t-paths
9: H ← ∅
10: go to 4
11: H ′ ← P
12: while ‖H ′‖ < ‖G‖ − K do
13: Let U be the set of connectible vertex pairs in H ′
14: if U = ∅ then
15: go to 26 {break from loop}
16: rmax ← 0
17: for all (u, v) ∈ U do
18: Let P be the most probable valid augmenting path between u and v with respect to H ′ and G
19: r ← R(H ′ ∪ P)

20: if r > rmax then
21: rmax ← r
22: P∗ ← P
23: if rmax < C · R(H ′) then
24: go to 26 {break from loop}
25: Add P∗ to H ′
26: Add H ′ to H
27: Monte Carlo Pruning(H , ‖H‖ − ‖G‖ + K)

was chosen experimentally as in the BPI algorithm. Algorithm 4 is restarted with a
larger number k · k1 of initial solution paths, if there are not enough paths to construct
a subgraph with the desired size. In our experiments, we set k1 = 2.

4.3 Remarks on the implementation and complexity of SPA

There are a few non-trivial implementation issues on Algorithm 3. Next, we will
show how connectible vertex pairs can be found efficiently (line 3), how to find the
most probable valid augmenting path (line 8), and how to calculate the reliability of
a series–parallel graph (line 9). We also discuss the total time complexity of SPA
algorithm.

4.3.1 Finding connectible vertex pairs

Following Definition 1, a series–parallel graph G can be conveniently represented with
a decomposition tree (Valdes et al. 1982). A decomposition tree T of G is a binary
tree, where each leaf vertex represents an edge of G. Inner vertices have always two
children and represent one of the composition operations of Definition 1. If an inner
vertex represents a series composition, we call it S-vertex, otherwise it is P-vertex.

123

Finding reliable subgraphs 11

S

1 5

2 3

64

T

(a)

P [S, T]

S [S, T] S [S, T]

P [1, 4]

S [1, 4] S [1, 4]

S [S, 6] (6, T)

(S, 5) (5, 6)

S [1, T](S, 1)

(4, T)

(1, 2) (2, 4) (1, 3) (3, 4)

(b)

P [S, T]

S [S, T] S [S, T]

P [1, 4]

S [1, 4] S [1, 4]

(S, 5) (5, 6) (6, T) (S, 1) (4, T)

(1, 2) (2, 4) (1, 3) (3, 4)

(c)

Fig. 1 A series–parallel graph (a), its decomposition tree (b), and its compressed decomposition tree (c).
Leaf vertices represent single edges, while inner vertices represent series decompositions (S) or parallel
decompositions (P). Terminals of subgraphs represented by inner vertices are enclosed in brackets

For each vertex v ∈ T , the subtree rooted at v represents a series–parallel subgraph
Gv ⊂ G with two terminals, which we denote by τ(v). If v is a leaf vertex, the sub-
graph is simply the edge stored at v, and its terminals are the endpoints of the edge. At
each inner vertex u with children v and w, the associated composition operation joins
the two subgraphs Gv and Gw, and the terminals of Gu = Gv∪Gw are determined by
the composition operation from the terminals of Gv and Gw (see Fig. 1 for an example
of a decomposition tree).

To quickly discover connectible vertex pairs, we use a compressed decomposition
tree Tc, which differs from a regular decomposition tree in two ways:

1. An inner vertex v ∈ Tc has two or more children. The composition operation of
v is applied to all subgraphs Gci in succession, where ci are the children of v,
enumerated in order from left to right.

2. If a non-root vertex u ∈ Tc is S-vertex (or P-vertex), then par(u) is P-vertex
(S-vertex).

We can easily convert a regular decomposition tree T to a compressed
decomposition tree Tc by recursively combining {u, par(u)} pairs of inner vertices
having the same composition operation. Let u ∈ T be an inner vertex, and suppose

123

12 P. Hintsanen, H. Toivonen

S1

S2 S3

(3, 4) (4, 9) P1 P2

(a)

S

S3(3, 4) (4, 9)

P1 P2

(b)

S

(3, 4) (4, 9) P1 P2

(c)

Fig. 2 Compression of a (partial) decomposition tree. Root S-vertex S1 has two children of type S (a).
We compress the tree by replacing S2 with its child edges (3, 4) and (4, 9) in (b), and S3 with its child
compositions P1 and P2 in (c)

that a non-leaf child v ∈ ch(u) has the same type (S or P) as u. We replace v with its
children, and repeat this for all children of u having the same type. After repeating
this procedure for all inner vertices u ∈ T , we have a compressed decomposition tree
Tc (see Figs. 1, 2 for illustrative examples).

The relationship between the terminals in a compressed decomposition tree and
connectible vertex pairs is characterized by the following lemma:

Lemma 1 Let G be a probabilistic graph, T a compressed decomposition tree of G,
and let {u, v} ⊂ V be two connectible vertices. Then there exists a vertex x ∈ T such
that

{u, v} = τ(x), (1)

or

{u, v} ⊂
⋃

c∈ch(x)

τ (c). (2)

Proof If (u, v) ∈ E , (1) holds trivially. Thus, we assume (u, v) �∈ E . Consequently,
x is an inner vertex. Now assume the contrary of (2):

∀x ∈ T : {u, v} �⊂
⋃

c∈ch(x)

τ (c). (3)

Let y be the highest vertex in T such that u ∈ τ(y). Similarly, let z be the highest
vertex in T such that v ∈ τ(z). Finally, let x ∈ T be the most recent common ancestor
of y and z. We separate two cases.

First suppose that x �= y and x �= z. Since T is compressed and y and z are as
high in T as possible, y and z are P-vertices. Furthermore, they lie in different sub-
trees rooted at two children of x : denote these children by c1 and c2. If x is P-vertex,
then connecting u and v connects Gc1 and Gc2 in such a way that Gx contains an
embedded Wheatstone bridge. Thus, Gx is no longer series–parallel (Duffin 1965),
which is a contradiction. On the other hand, if x is S-vertex, c1 and c2 are P-vertices
connecting subgraphs formed by series compositions. If u and v are connected by an

123

Finding reliable subgraphs 13

augmenting path, it does not pass through any vertex in τ(c1). In such case Gx is not
series–parallel, which is again a contradiction.

In the second case we have x = y or x = z. Assume x = y, the case x = z is
identical. Since T is compressed, z is P-vertex and par(z) is S-vertex connecting two
or more parallel compositions. Furthermore, τ(par(z)) = {a, b} does not contain v (z
is as high as possible in T), so all s–v-paths go through a or b. By (3), a �= u and
b �= u; hence, if we connect u and v by an augmenting path, we bypass a or b. Then
G y is no longer series–parallel: a contradiction. ��

The significance of Lemma 1 is that the search for connectible vertex pairs in a
graph reduces to a simple recursion in the corresponding compressed decomposition
tree. This is summarized in Theorem 1 below.

Theorem 1 Let G be a series–parallel graph, and let T be a compressed decompo-
sition tree of G. Then the vertex pair collection

C =
⎧
⎨

⎩
{u, v} ⊂

⋃

c∈ch(x)

τ (c) ∪ τ(x): x ∈ T

⎫
⎬

⎭
(4)

consists of all connectible vertex pairs of G.

Proof By Lemma 1, all connectible vertex pairs of G are contained in C. On the other
hand, C contains only connectible vertex pairs. To see this, consider an arbitrary vertex
pair {u, v} ∈ C, and let x ∈ T be the corresponding vertex in (4).

Suppose first that x is a leaf vertex representing a single edge e ∈ E . It is obvious
that the endpoints of e can be connected with an augmenting path P: namely, P forms
a new series composition which, in turn, forms a new parallel composition with e, and
G ∪ P remains series–parallel. Hence, u and v are connectible.

Now assume that x is an internal vertex. Since T is compressed, there exist child
vertices y and z such that u ∈ τ(y) and v ∈ τ(z). Let P be an augmenting path
connecting u and v. Again, P forms a new series composition S. Assume first that x
is P-vertex. Then τ(c) are identical for all c ∈ ch(x), and S is simply a new series
component to the existing parallel composition of x . Conversely, if x is S-vertex, we
get a new parallel composition consisting of S together with a new series composition
of y, c1, . . . , ck, z, where ci are the children of x between y and z. In both cases, G∪P
is series–parallel, and u and v are connectible. ��

In conclusion, we can implement line 3 of Algorithm 3 efficiently by maintaining
a separate compressed decomposition tree T for the solution subgraph H . Then, all
possible connectible vertex pairs can be found by recursively traversing T and forming
the vertex pairs according to (4). This can be done in O(‖H‖2) time: although the
size of T is O(‖H‖), in the worst case almost every vertex pair is connectible (for
example, after the initialization when H consists of a single s–t-path). Finally, after
expanding H with the optimal augmenting path, we need to update the compressed
decomposition tree, which can be done in constant time.

123

14 P. Hintsanen, H. Toivonen

4.3.2 Finding the most probable augmenting path

After forming the collection of connectible vertex pairs, we need to find the most
probable augmenting path for each connectible vertex pair. Let {u, v} ⊂ H be such
a pair. A straightforward way to proceed is to attach u and v into G \ H using only
edges from a set F = {(x, y) : (x, y) ∈ E, x = u∨ x = v, y ∈ G \ H}), that is, edges
with one endpoint at u or v and another at G \ H . Clearly, this can be done in O(|E |)
time. The most probable augmenting path connecting u and v can be then sought
on the resulting graph. With a standard implementation of Dijkstra’s algorithm using
priority queues, the running time is O(|E |)+ O ((‖G \ H‖ + |G \ H |) log |G \ H |).
After repeating the procedure for every connectible vertex pair, the total running time
is O

(‖H‖2(|E | + (‖G \ H‖ + |G \ H |) log |G \ H |)).
A few optimizations can be readily done to speed up the implementation. First, for

each v ∈ H , the set of neighbor vertices Uv ⊂ G \ H of v can be separately maintained
to facilitate rapid attachment of v to G \ H . To minimize relatively expensive shortest
path computations, we can cache all connectible vertex pairs for which there was no
augmenting path found. Such pairs can be skipped in later iterations, since successive
graphs G \ H are strictly decreasing. Finally, if we use a single-source shortest paths
algorithm (such as Dijkstra’s algorithm), we can also cache the shortest paths from
u ∈ H to all w ∈ G \ H , and consult these caches when finding the most probable
augmenting paths between u and v, v ∈ H , during the same iteration. This effectively
halves the number of shortest path computations per iteration.

4.3.3 Calculating the reliability of a subgraph

The reliability of a series–parallel graph G is easy to calculate with the corresponding
(regular or compressed) decomposition tree T . We perform a post-order traversal in
T , and in each vertex v ∈ T , the reliability of the corresponding subgraph is calculated
from the reliabilities of its children:

R(Gv) =
⎧
⎨

⎩

pe if v is leaf∏
c∈ch(v) R(Gc) if v is S-vertex

1−∏
c∈ch(v) (1− R(Gc)) if v is P-vertex

(5)

Since the size of the decomposition tree is O(‖H‖), we can implement line 9 of
Algorithm 3 to work in O(‖H ∪ P‖) time.

4.3.4 Complexity of SPA

By substituting upper bounds O(‖H‖) = O(|E |−K) and O(‖H ∪ P‖) = O(|E |) to
the observations made in the previous sections, we can give a very rough upper bound
O

(
(|E | − K)3(E + (|E | + |V |) log |V |)) for the total time complexity of SPA. This

bound is not tight, but it demonstrates the significant (inverse) effect of K on the
running time. As SPA is an incremental algorithm, the running time decreases as the
size of H decreases, i.e., as K increases. In typical applications, ‖H‖ = |E | − K is
small and thus also the cubic factor is small.

123

Finding reliable subgraphs 15

5 Experimental evaluation

We have conducted a series of experiments with the proposed methods (Best Paths
Incremental, BPI; Series–Parallel Augmentation, SPA) as well as with the recently
proposed method (Monte Carlo Pruning, MCP) (Hintsanen 2007). The goals of this
experimental evaluation are the following: to assess the quality of the results (reliabil-
ity of the extracted subgraphs), to test the scalability of the methods, and to test the
effect of using multiple initial solutions for SPA.

5.1 Test setup

Test data The experiments have been carried out on different real biological graphs,
illustrating different usage scenarios.

Our data source is the Biomine database (Sevon et al. 2006). It currently
indexes information from eight major databases (Entrez gene, UniProt, Gene Ontol-
ogy, OMIM, NCBI HomoloGene, InterPro, STRING, and KEGG) and consists of
about 1 million vertices and 6 million edges. Biomine stores biological entities and
their relationships as a probabilistic graph. Vertices of the graph represent biological
entities such as genes, proteins and molecular processes, as well as more abstract
concepts such as molecular loci and article abstracts. Edges represent annotated rela-
tionships between entities. Edges are obtained as cross-references from the original
databases; their probabilities are determined by various factors taking account of the
source database reliability, subjective relevance, and informativeness (Sevon et al.
2006).

For the experiments, we designed three different types of scenarios, and then
extracted several graph datasets for each scenario (Table 1). We describe the scenarios
first and then outline the graph extraction method.

– Scenario 1 (Dys): The user is interested in a known relationship between entities.
The test case is built around a dyslexia-related gene vertex (Entrez gene id 6091)

Table 1 Description of the subgraphs used in the experiments

Graph id Query vertices Number of edges Number of vertices

Dys1 Entrez gene 6091, OMIM 127700 141 64
Dys2 Entrez gene 6091, OMIM 127700 1,113 452
Dys3–Dys7 Entrez gene 6091, OMIM 127700 3,818–11,861 1,775–4,163
Conn1 PubMed 11960552, Entrez gene 2719 853 487
Conn2 GO 51605, Entrez gene 286971 2,727 989
Conn3 Entrez gene 181788, Entrez gene 169026 1,800 591
Conn4 UniProt P84751, STRING ENSP297185 4,504 908
Conn5 UniProt Q8C3X4, UniProt Q921W0 3,513 1,172
Gene1 Entrez gene 284467, Entrez gene 26231 51,672 16,811
Gene2 Entrez gene 54758, Entrez gene 389874 41,377 13,875
Gene3 Entrez gene 55222, Entrez gene 652968 10,082 3,815
Gene4 Entrez gene 728731, Entrez gene 79645 10,922 3,781

123

16 P. Hintsanen, H. Toivonen

and a dyslexia phenotype vertex (OMIM id 127700), to be used as query vertices.
We extracted graphs of different sizes for this pair of vertices, to test the methods
on differently sized graphs.

– Scenario 2 (Conn): The user is interested in a putative relationship between entities.
For each test case in this scenario, we selected two random vertices with a shortest
connecting path of three edges.

– Scenario 3 (Gene): The user is interested in entities of no known connection. For
each test case, we selected two random gene vertices, both having degree 10.

Given a query vertex pair {s, t}, the corresponding test graph was retrieved from
Biomine with a best-first search from both vertices. The probability threshold was
0.01, i.e., all vertices and edges were retrieved from which the best path to either of
the original vertices had at least probability 0.01. After retrieval, leaf vertices (non-
query vertices with degree 1) and vertices occurring only on cyclic s–t-paths, along
with their adjacent edges, were removed. Such vertices and edges have zero relevance
for reliability.

For the scalability test sets (Dys1–7), however, we used different strategies. Dys1
and Dys2 were obtained with different search radiuses in order to obtain graphs of
different sizes. Dys3–7 graphs, in turn, were obtained from a large graph of 13,828
edges by randomly removing roughly 2,000 edges at a time, so that every new (smaller)
graph is a subgraph of the previous one.

Test queries In each test, the two query terminals are the ones specified above
(Table 1). Our emphasis is on extracting small subgraphs, ideally suitable for interac-
tive exploration. For such use, the subgraphs should have at most dozens of edges. In
most of our tests, we vary the resulting subgraph size from 10 to 160 edges for a fixed
graph, to study the effect of the subgraph size on reliability and running time. To study
the effect of input graph size, we vary the graph and constantly extract a subgraph of
50 edges.

Parameters For both Best Paths Incremental and Series–Parallel Augmentation, the
last step of the algorithms involves pruning (few) excess edges by the Monte Carlo
Pruning algorithm. For this, we used 1 million iterations, which should be a safe choice
without significant computational overhead for an extracted graph of less than 200
edges.

For SPA, we did not use alternative initial solutions except in the tests devoted to
their effects.

MCP was run with 1 million iterations, unless otherwise stated.
For MCPre-est we used different re-estimation strategies depending on the case.

The parameters are always specified with the results; the notation 10000/50 indicates
that 10,000 MC iterations were performed every 50 edge removals to re-estimate the
edge relevances.

Test environment The algorithms have been implemented in a mixture of Python and
C. The input graph was a simple text file. For performance analysis, we have measured

123

Finding reliable subgraphs 17

the total elapsed (wall clock) time in seconds. All tests have been run on standard PCs
running Linux, with little other activity during the tests.

5.2 Results

Scalability We first study the scalability of the methods, both in terms of the
reliability of the produced subgraphs as well as the running times. For the experi-
ments we used the Dys3–Dys7 graphs (see Table 1). We extracted a relevant subgraph
of 50 edges from each of these subgraphs using BPI, SPA, MCP, and MCPre-est.

Both BPI and SPA produce similar reliabilities, approximately in the range 0.04–
0.58 (Fig. 3a). Smaller input graphs result in smaller reliabilities in the extracted
subgraphs, since the original graphs have smaller reliabilities themselves. MCPre-
est produces poor results, with reliabilities in the range 0–0.05. MCP (without re-
estimation) failed completely, and in these tests never returned a connected subgraph.
Actually, in all our tests involving graphs with over 1,000 edges, MCP either failed
to connect the terminals or produced clearly inferior subgraphs compared to BPI and
SPA. This happened despite the fact that we used a very large number (1 million) of
Monte Carlo iterations in order to have maximally good results for MCP.

The poor performance of MCP and to some extent of MCPre-est is due to the fact the
true R(G−e) values approach zero when the number of edges grows, and the accuracy
of the corresponding estimates is not sufficient to separate edges. Effectively, MCP
ends up removing edges almost by random. MCPre-est partially avoids this deficiency
by re-estimating R(G − e) values at some intervals.

The computational scalability of the proposed methods (BPI, SPA) is good (Fig. 3b).
Running times are in the range 43–134 s. The Monte Carlo based alternatives, MCPre-
est and MCP, are clearly slower: their running times are in the order of 300–3,700 s.
These running times depend on the frequency of re-estimation and the number of MC
iterations used. However, even with these high computational costs, they were not able
to produce reliable results.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

3818 5778 7835 9856 11861

R
el

ia
bi

lit
y

Input graph size (edges)

BPI
SPA
MCP

MCPre-est 20000/100
MCPre-est 10000/50

MCPre-est 1000/5

(a)

 0

 200

 400

 600

 800

 1000

3818 5778 7835 9856 11861

E
la

ps
ed

 ti
m

e
(s

ec
)

Input graph size (edges)

BPI
SPA
MCP

MCPre-est 20000/100
MCPre-est 10000/50

MCPre-est 1000/5

(b)

Fig. 3 Reliabilities (a) and running times (b) with a fixed subgraph size (50 edges) and varying input graph
size (x-axis)

123

18 P. Hintsanen, H. Toivonen

Based on the results, the proposed methods (BPI, SPA) clearly outperform the sim-
pler methods (MCP, MCPre-est). With the reasonable ranges of parameter values used
in the experiments, this was the case in terms of both the quality of the results, as well
as the running time. For the Monte Carlo based methods, the quality/time trade-off
can be adjusted by their parameters, but improving one will further degrade the other
one. It does not seem plausible that these methods could be useful in practice for large
input graphs.

Performance on small datasets While our emphasis is on scalability and large input
graphs, it is also interesting to test the methods on a small dataset: (1) For small
datasets, it is feasible for MCPre-est to re-estimate edge relevances after each edge
removal, leading to more optimal results. This is an interesting reference for analyzing
the quality of the results of BPI and SPA, even if the running time of MCPre-est may
be too large for practical applications. (2) We proposed to use MCP to fine tune the
results of BPI and SPA to the requested size, and we are interested in studying how
well MCP works in this setting.

The performance of all methods is relatively uniform when the task is to remove
edges from a relatively small graph (Dys1 graph of 141 edges). The best reliabilities are
obtained by MCPre-est, when edge relevances are re-estimated with 100,000 MC iter-
ations after each edge removal (Fig. 4). However, this quality comes at a substantial
computational cost. The running times of MCPre-est 100000/1 illustrate its depen-
dence on the number of edges removed, a property that makes the method unsuitable
for large graphs.

BPI and SPA have a consistent performance, both in terms of reliability of the result
and the computation time. Further, the result indicates that MCP, without re-estima-
tion, is useful on small graphs when relatively few edges are removed (Fig. 4). This
is good news for BPI and SPA, which use MCP to adjust their initial result to the
required size.

Effect of using several initial solutions for SPA We next study variants of the SPA
algorithm. It has the option of building several different series–parallel graphs from
different starting points, and using their union as the solution (which is further pruned

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120

R
el

ia
bi

lit
y

Result size (edges)

BPI
SPA
MCP

MCPre-est 100000/1
MCPre-est 10000/1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100 120

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

BPI
SPA
MCP

MCPre-est 100000/1
MCPre-est 10000/1

Fig. 4 Reliabilities (left) and running times (right) for the small input graph Dys1 of 141 edges

123

Finding reliable subgraphs 19

by MCP to the desired size). By construction (Algorithm 4), this union is unlikely to be
series–parallel, and is thus less restricted. Recall that the use of several initial solutions
is governed by parameter C > 1. As soon as the addition of any path fragment does
not improve the reliability of the solution by factor C at least, the algorithm starts to
build a new series–parallel graph.

We experimented with values C = {1.1, 1.2, 1.3} and compared them against the
standard SPA (i.e., C = 1). The observation is that C > 1, especially C = 1.1, often
improves the quality (reliability) of the results (four out of five Conn graphs, two out
of four Gene graphs, zero out of one Dys graph). However, the quality may actually
also decrease (all other cases). Figure 5 gives some illustrative examples. In any case,
the use of several initial solutions results in longer running times, with C = 1.1 being
the most expensive of the tested variants. The reason is that a lower value of C results
in fewer but longer constructions of series–parallel components than larger values.

Our conclusion from these experiments is that multiple starts with C = 1.1 may be
useful to improve the quality of the results, but since the results may also deteriorate
and there is a substantial increase in running time, the standard SPA is a safer choice.

Quality of results We now take a closer look at the performance of BPI and SPA (with-
out several initial solutions), and will also consider results for MCPre-est 100000/25
for reference. The optimal reliability is not known, so we have to base the analysis
mostly on comparison of the various methods.

We know, however, that the result has to be close to optimal if the reliability is
close to one. This is indeed the case for the relatively well connected query nodes of
graphs Conn1 (Fig. 6a), Conn2 (Fig. 5a), Conn3, Conn5, and Dys2. In these cases, the
original graphs of 800–3,500 edges can be reduced to 20–160 edges while maintaining
a reliability of at least 85%.

For the Conn graphs, BPI tends to give better results with a small but a clear margin
(Fig. 6a is a representative example, Fig. 6b an exceptional case). Interestingly, in
these cases SPA with C = 1.1, 1.2, or 1.3 gives practically equal results to BPI (not
shown). With large values of C , SPA reduces to BPI: the series–parallel components
consist of a single path each. This may happen already with the values of C we used,
especially if there are very strong connections between the query vertices.

For the random gene pairs (Gene1–Gene4), the situation is completely the opposite:
in most cases, SPA outperforms BPI by a large margin (Fig. 6c gives an example). The
relatively poor performance of BPI is likely due to the fact that for distant connections
best paths may be strongly correlated, and BPI fails to acquire many independent
or partially independent connections in such cases. For the dyslexia vertex pair, the
results are mixed (Figs. 3a, 4, and 6d).

In terms of running times, BPI tends to be faster, but this is not always the case.
Both BPI and SPA behaved roughly linearly in the size of the extracted subgraph. The
variation in the running times is caused by the Monte Carlo Pruning step in the end of
the methods, and in the case of BPI, restarts of the algorithm with larger numbers of
initial best paths. BPI and SPA are not very sensitive to the size of the input graph. In
the scalability test, they both had sublinear running times in the size of the input graph
(Fig. 3b). This is in great contrast with the unscalable Monte Carlo based methods we
used.

123

20 P. Hintsanen, H. Toivonen

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

SPA
SPA C=1.1
SPA C=1.2
SPA C=1.3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

SPA
SPA C=1.1
SPA C=1.2
SPA C=1.3

(a) Results for Conn2 graph.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

SPA
SPA C=1.1
SPA C=1.2
SPA C=1.3

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

SPA
SPA C=1.1
SPA C=1.2
SPA C=1.3

(b) Results for Gene1 graph.

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

SPA
SPA C=1.1
SPA C=1.2
SPA C=1.3

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

SPA
SPA C=1.1
SPA C=1.2
SPA C=1.3

(c) Results for Gene3 graph.

Fig. 5 Subgraph reliabilities (left) and running times (right) of different variants of SPA on some
representative graphs

MCPre-est performed uniformly poorly (Fig. 6a, b and d). It was at its best with
the smallest input graphs, Dys1 (141 edges, Fig. 4), Dys2 (1,113 edges, Fig. 6d),
and Conn1 (853 edges, Fig. 6a), from which it was able to produce some reliable
subgraphs. Its running time was usually one or two magnitudes higher than that of
BPI or SPA.

123

Finding reliable subgraphs 21

Fig. 6 Subgraph reliabilities
(left) and running times (right)
of BPI, SPA, and MCPre-est on
some representative graphs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

BPI
SPA

MCPre-est 100000/25
 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

BPI
SPA

MCPre-est 100000/25

(a) Results for Conn1 graph.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

BPI
SPA

MCPre-est 100000/25
 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

BPI
SPA

MCPre-est 100000/25

(b) Results for Conn3 graph. MCPre-est elapsed time is approximately constant at 1400 sec.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

BPI
SPA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

BPI
SPA

(c) Results for Gene4 graph. MCPre-est was not run due to its long execution times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100 120 140 160

R
el

ia
bi

lit
y

Result size (edges)

BPI
SPA

MCP re-est 100000/25
 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140 160

E
la

ps
ed

 ti
m

e
(s

ec
)

Result size (edges)

BPI
SPA

(d) Results for Dys2 graph. MCPre-est elapsed time is approximately constant at 590 sec.

Overall, the series–parallel method SPA seems the most robust across the tests we
performed. Using multiple starts with C = 1.1 may be useful, but increases the run-
ning time. The best path method BPI often produces equally good results, too, but
seems clearly inferior for distantly connected vertex pairs. Of course, one can always
run both SPA (in its different variants) and BPI, as both methods are relatively fast,
and choose the better solution.

123

22 P. Hintsanen, H. Toivonen

6 Conclusions

Graphs are versatile and powerful models for many kinds of multirelational data
involving heterogeneous entities. Weighted and especially probabilistic graphs can
be used to naturally represent irregular, uncertain, or probabilistic relationships. As
graphs grow larger and larger—for example, the World Wide Web and various social
networks—scalability of the methods for mining these graphs becomes paramount.

One strategy to cope with an enormous mass of data is to quickly extract a small
subset, which can then be further studied with computationally more demanding meth-
ods. Obviously, the extracted subset should have the most prominent features of the
data to be useful.

We proposed two new methods for subgraph extraction, Best Paths Incremental
(BPI) and Series–Parallel Augmentation (SPA). They aim to solve the most reliable
subgraph problem, and facilitate scalable and robust extraction of reliable subgraphs
from large probabilistic graphs. BPI is tempting as it is conceptually simple, but SPA
seems to have a more consistent performance across different situations. We bench-
marked BPI and SPA against previous methods that estimate edge relevances by a
Monte Carlo technique and prune the original graph. These methods only work for
relatively small datasets.

Non-trivial, indirect links in probabilistic graphs can become particularly
laborious to discover and analyze due to their potentially myriad dependencies. Focus-
ing on small, robust subgraphs with many independent and non-redundant connections
between the vertices of interest can greatly simplify the situation. Reliable subgraphs
can be expected to have these features and, as suggested by our experiments on real
biological graphs, the proposed methods are able to efficiently find these features using
only a fraction of edges from the original input graphs.

In the future, efficient methods should be developed to support multiple terminal
vertices, an important generalization of the two-terminal problem we have considered.
Another interesting research topic is a generalization of reliable subgraphs: how to
define and find, in an unsupervised manner, strongly connected subsets, or clusters of
terminals?

Acknowledgements We would like to thank Lauri Eronen, Kimmo Kulovesi and Petteri Sevon for their
help and co-operation in Biomine project. This work has been supported by the Academy of Finland Grant
118653 (Algodan) and Tekes, the Finnish Funding Agency for Technology and Innovation.

References

Birnbaum ZW (1969) On the importance of different components in a multicomponent system. Multivar
Anal II:581–592

Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE Trans Comput 35:677–
691

Colbourn CJ (1987) The combinatorics of network reliability. Oxford University Press, Oxford
De Raedt L, Kersting K, Kimmig A, Revoredo K, Toivonen H (2008) Compressing probabilistic Prolog

programs. Mach Learn 70:151–168
Duffin RJ (1965) Topology of series–parallel networks. J Math Anal Appl 10:303–318
Eppstein D (1998) Finding the k shortest paths. SIAM J Comput 28:652–673

123

Finding reliable subgraphs 23

Faloutsos C, McCurley KS, Tomkins A (2004) Fast discovery of connection subgraphs. In: Proceedings
of the 10th ACM SIGKDD international conference on knowledge discovery and data mining,
pp 118–127

Hershberger J, Maxel M, Suri S (2007) Finding the k shortest simple paths: a new algorithm and its imple-
mentation. ACM Trans Algorithms 3:45

Hintsanen P (2007) The most reliable subgraph problem. In: Proceedings of the 11th European conference
on principles and practice of knowledge discovery in databases, pp 471–478

Lawler EL (1972) A procedure for computing the k best solutions to discrete optimization problems and
its application to the shortest path problem. Manage Sci 18:401–405

Roditty L (2007) On the k-simple shortest paths problem in weighted directed graphs. In: Proceedings of
the 18th annual ACM-SIAM symposium on discrete algorithms, pp 920–928

Sevon P, Eronen L, Hintsanen P, Kulovesi K, Toivonen H (2006) Link discovery in graphs derived from bio-
logical databases. In: Proceedings of data integration in the life sciences. Third international workshop,
pp 35–49

Valdes J, Tarjan RE, Lawler EL (1982) The recognition of series–parallel digraphs. SIAM J Comput 11:298–
313

123

	Finding reliable subgraphs from large probabilistic graphs
	Abstract
	1 Introduction
	2 The most reliable subgraph problem
	3 Related work
	4 Algorithms
	4.1 BPI: An incremental algorithm using best paths
	4.2 SPA: An incremental algorithm using series--parallel graphs
	4.3 Remarks on the implementation and complexity of SPA

	5 Experimental evaluation
	5.1 Test setup
	5.2 Results

	6 Conclusions
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

