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Chapter 1. Gene mapping by pattern discovery

Petteri Sevon, Hannu T.T. Toivonen and Paivi Onkamo

Summary

The objective of gene mapping is to localize genes responsible for a particular
disease or trait. We consider association-based gene mapping, where the data
consists of markers genotyped for a sample of independent case and control
individuals. In this chapter we give a generic framework for non-parametric
gene mapping based on pattern discovery. We have previously introduced
two instances of the framework; Haplotype Pattern Mining (HPM) for case—
control haplotype material and QHPM for quantitative trait and covariates.
In our experiments HPM has proven to be very competitive compared to
other methods. Geneticists have found the output of HPM useful and today
HPM is routinely used for analyses in several research groups. We review
these methods and present a novel instance, HPM-G, suitable for directly
analyzing phase-unknown genotype data. Obtaining haplotypes is more costly
than obtaining phase-unknown genotypes, and our experiments show that
although larger samples are needed with HPM-G, it is still in many cases
more cost-effective than analysis with haplotype data.

1.1 Introduction

The first step in discovering genetic mechanisms underlying a disease is to find
out which genes, or more precisely, which polymorphisms, are involved. Gene
mapping, the topic of this chapter, aims at finding a statistical connection
between the trait under study, and one or more chromosomal regions likely
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4 Gene mapping by pattern discovery

to be harbouring the disease susceptibility (DS) genes. Chromosomal regions
that co-segregate with the trait under study are searched for in DNA samples
from patients and controls. Even though the coding parts of the genes—the
exons—only cover a small fraction of the human genome, the search cannot
be restricted to them: polymorphisms affecting disease risk may reside in the
introns or promoter regions quite far from the exons as well, having effect on
the expression level or splicing of the gene.

All the important simple monogenic diseases have already been mapped,
or at least it is well known how it can be done. The general interest
is shifting towards complex disorders, such as asthma or schizophrenia,
where individual polymorphisms have rather weak effects. There may be
epistatic interaction between several genes, and some mechanisms may be
triggered by environmental factors. Complex disorders are also challenging
clinically, it is of primary importance that the diagnoses are based on
identical criteria. Systematic noise caused by inconsistent definitions for
symptoms could severely hinder the search for the genetic component for the
disorder. With complex disorders the mutation does not always cause the
disorder (lowered penetrance), or the same disorder may be caused by other
factors (phenocopies). There are other stochastic processes involved such as
recombinations and mutations, and genealogies are usually only known a few
generations back. For these reasons, only probabilistic inferences can be made
about the location of the DS genes.

In this chapter we present Haplotype Pattern Mining (HPM), a method
for gene mapping that utilizes data mining techniques. The chapter is
organized as follows. First, we review the basic concepts in genetics and gene
mapping in Section 1.2. Next, we give an abstract generic algorithm for HPM
in Section 1.3 and present and evaluate three instances of that in Section 1.4.
Finally, we give a summary of related work in Section 1.5 and close with a
discussion in Section 1.6.

1.2 Gene mapping

Markers. Markers provide information about genetic variation among people.
They are polymorphic sites in the genome, for which the variants an
individual carries can be identified by laboratory methods. The location of a
marker is usually called a locus (pl. loci). The variants at a marker are called
alleles. We will use small integer numbers to denote alleles throughout the
chapter. The array of alleles in a single chromosome at a set of markers is
called a haplotype.

Ezample 1.2.1. Let M1, M2, M3 and M4 be markers located in this order
along chromosome 1. Let the alleles at these marker loci in a given instance
of chromosome 1 be 1, 3, 2 and 1, respectively. The haplotype for this
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1.2 Gene mapping 5

chromosome over all the markers is [1 3 2 1], and the haplotype over markers
M2 and M4, for instance, is [3 1].

Marker data is only used for making inferences about the genealogical
history of the chromosomes in the sample, the actual disease predisposing
polymorphisms are not typically expected to be among the markers. If two
chromosomes have the same allele at a marker, the allele may be identical
by descent (IBD), inherited from a relatively recent common ancestor. It is
possible that two copies of same allele have different mutation histories, in
which case the two alleles are said to be identical by state (IBS). On the
other hand, different alleles at a marker in a pair of chromosomes do not
completely exclude the possibility of a recent common ancestor; the marker
may have mutated recently in one of the two lineages, or there might have
been a genotyping error.

Linkage. The concept of linkage is crucial for gene mapping. In meiosis the
human chromosomes are organized as homologous pairs lined up next to
each other. In a random recombination process, these aligned chromosomes
may form crossovers and exchange parts. Recombination can be modeled
with reasonable accuracy as a Poisson process. The number of crossovers
over a given genetic distance d follows Poisson distribution with mean d,
and the distance between two consecutive cross-overs follows exponential
distribution with intensity parameter d. As a consequence, loci close to each
other in the same chromosome are closely linked, and crossovers in between
are rare. Genetic distances between loci are measured in Morgans (M): one
Morgan is the distance at which the expected number of crossovers in a
single meiosis is one. The relationship between genetic distance and physical
distance measured in basepairs (bp) is such that on the average roughly 1 Mb
corresponds to 1 cM, but the ratio varies a lot throughout the genome.

Linkage disequilibrium. Because of recombinations, in a hypothetical
infinite randomly mating population all markers would eventually be in
linkage equilibrium, totally uncorrelated. The opposite phenomenon—/inkage
disequilibrium (LD)—may arise from many different sources; random drift
due to finite population size, recent population admixture, population
substructure, etc. From gene mapping perspective, utilizable LD in present
population results from chromosomes sharing fragments where no cross-
overs have taken place since the most recents common ancestor. Genetic
bottlenecks, where an initially small population has gone through a relatively
long period of slow growth followed by rapid expansion, are an important
source for this type of LD. As the initial population is quite small, only a
handful of copies of a mutation, the founder mutations, may have entered
the bottleneck in different founder haplotypes. The effect of drift is at its
strongest during the period of slow growth, skewing the distribution of
the founder mutation frequencies. Consequently, only few of the founder
mutations are likely to be present in the current population in significant
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6 Gene mapping by pattern discovery

numbers. Small isolated founder populations such as Kainuu in North-Eastern
Finland or the French-Canadians are examples of recent bottlenecks. The
whole Caucasian population is thought to have gone through a bottleneck
approximately 50,000 years ago migrating out of Africa [4]. LD decays over
time, as the chromosomes get more fragmented and conserved regions get
shorter (Figure 1.1). The expected length of a region conserved over g
generations is 2 M/g. LD resulting from the “out of Africa” bottleneck can
still be observed over a 100 kb range.

A
y
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Gen. 2
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Fig. 1.1. The evolution of a chromosomal region over 20 generations. The thicker
line represents fragments from the original chromosome at generation 0. In the
first two meioses, crossovers at locations A and B have replaced the ends of the
chromosome by material from other chromosomes. After 20 generations only a short
fragment of the original chromosome has remained intact.

For an investigator, linkage disequilibrium is both a friend and an enemy.
Because of the confounding effect, nearby polymorphisms are correlated,
and other markers can be used as surrogates for the disease susceptibility
mutation. Therefore a reasonably dense map of markers covering the genomic
region under study can be sufficient for gene mapping. Furthermore, without
LD all polymorphic loci would be independent of each other, leading to
an unbearable multiple testing problem. On the other hand, LD makes it
extremely hard to tell which polymorphism is behind the trait. Recent studies
[15] show that in Caucasian populations the genome consists of blocks of 20—
100 kb, where there are effectively only a handful of different haplotypes
in each, and no crossovers can be observed. It may be impossible to map
polymorphisms inside a block, yet a single block can contain several genes.

Gene mapping paradigms. Family studies using marker data from extended
pedigrees or sib-pairs are based on detecting crossovers using a sparse marker
map. Roughly, the idea is to predict the location of the DS gene to be where
the marker alleles co-segregate with the trait value. However, due to the
relatively small number of crossovers observable in pedigrees the resolution of
such studies is not particularly good. Therefore family-based linkage analysis
is used as the first step of a mapping project, to guide which regions to focus
on in subsequent analyses.

DRAFT
Accepted for publication in 'Data Mining in Bioinformatics'
Jason Wang, Mohammed Zaki, Hannu Toivonen, and Dennis Shasha (Eds.), Springer



1.2 Gene mapping 7

Case—control studies of independent individuals can in principle take
advantage of a much larger number of historical crossovers in the (unknown)
genealogy leading to the observed sample. It is only possible to get indirect
evidence of these crossovers, in the form of shared patterns apparently
inherited from a common ancestor, adding to the uncertainty of the analysis.

The concept of IBD generalizes to chromosomal regions: A region is IBD
in a homologous pair of chromosomes if no crossovers have occurred in either
of the lineages since the most recent common ancestor. As a result, haplotypes
for any set of markers within the IBD region are identical save for marker
mutations. Multi-marker haplotypes are more informative than single alleles,
and consequently haplotype sharing is more convincing evidence of IBD
status.

All the chromosomes bearing a mutation inherited from a common
ancestor also share a varying amount of the surrounding region IBD
(Figure 1.2). All case—control methods are based on detecting haplotypes
corresponding to these IBD regions, and their association to the trait. In the
proximity of the DS gene, LD can be increased artificially via the selection of
the study subjects. If the affected are over-represented in the sample, the set
of haplotypes will be enriched with the haplotype bearing the DS mutation.
This is particularly useful if the causal mutation is rare.

M1 M2 M3 M4 M5 M6
| [ I | | M1 M2 M3 M4 M5 M6

Chri HI 1 3 3 2 1 1

Chr2 : H2 4 2 3 2 2 3

Chr3 : H3 2 1 3 2 2 2
1

Chra HA 32 3 2 1 3

hes : HS 1 1 2 2 1 1

Fig. 1.2. A set of chromosomes that are IBD at the location denoted by the vertical
dashed line also share a varying length of the surrounding sequence (on the left).
This sharing is reflected by the corresponding haplotypes (on the right).

Acquisition of data. The two most common types of markers are single
nucleotide polymorphisms (SNP) and short tandem repeats (STR), also
known as microsatellites, where the number of repeats of a short sequence,
typically 2-4 bases, varies. STRs are the more informative of the two, the
number of alleles may be more than a dozen. The number of alleles in SNPs
is two, but SNPs are much more frequent in the genome, and thus enable
denser marker maps and are more suitable for fine mapping. SNPs are also
more stable than STRs. Mutation rates for SNPs are estimated at 102 per
meiosis, whereas for STRs they can be as high as 1073.
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8 Gene mapping by pattern discovery

The human genome is organized in 22 pairs of homologous chromosomes
(autosomes), and a pair of sex chromosomes. A marker residing in an
autosome or in the pseudo-autosomal region of the sex chromosomes has two
instances in any individual. The process of reading the alleles at a marker
is called genotyping, and the pair of alleles is the genotype at the marker.
Current laboratory techiques produce phase-unknown genotypes; there is
no telling which of the two alleles is of paternal or maternal origin. Term
genotype also applies to any set of markers; a multi-marker genotype is the
array of the single marker (phase-unknown) genotypes.

Since laboratories produce phase-unknown genotype data, haplotypes
are not readily available for analysis. Haplotypes can be inferred based on
genotypes from relatives. The most common procedure for obtaining case—
control haplotype data is to genotype family trios consisting of the parents
and a child. Assuming that the genotypes are known for all three, the phases
of the alleles of the child can be determined in all cases but the one in which
all the three have similar heterozygous genotype at the marker.

Example 1.2.2. Assume that the phase-unknown genotypes over two markers
in a family trio are

M1 M2

father 1,2 1,2
mother 2,3 1,2
child 2,3 1,2

For the first marker we can infer the alleles that the child has inherited from
the mother(3) and the father(2), but for the second marker there is no way
to determine the phases.

Additionally, the non-transmitted parental alleles are also determined. As
a result, four independent haplotypes can be obtained from a trio; the two
transmitted and the two non-transmitted pseudo-haplotypes. Note that the
non-transmitted pseudo-haplotypes are the complements of the transmitted
haplotypes with respect to the parental genotypes, and do not necessarily
correspond to any real chromosomes.

At present time, the cost of genotyping in a large scale mapping study
is considerable. The need to detect DS genes in relatively small samples
motivates the development of more powerful methods for in silico analysis of
marker data.

1.3 Haplotype patterns as a basis for gene mapping

In this section we present a general framework, Haplotype Pattern Mining
(HPM), for gene mapping based on haplotype patterns. HPM tests each
marker for association based on haplotype sharing around it. HPM looks for
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1.3 Haplotype patterns as a basis for gene mapping 9

patterns in the marker data that could be informative of the location of a DS
gene. Since the information is essentially contained in haplotypes reflecting
IBD sharing in a part of a chromosome, the patterns are haplotypes over
subsets of the marker map that are likely to correspond to such IBD regions.

In the following subsections we first present the generic HPM algorithm
in terms of three components; language £ of haplotype patterns, qualification
predicate ¢ over £, and marker scoring function s. Then we give a detailed
description for each of the components.

1.3.1 Outline of the algorithm

The input for HPM consist of marker data (either a set of haplotypes, a set of
phase-unknown genotypes, or a combination of both), and the associated trait
values. Optionally the input may also include a set of explanatory covariates
such as body mass index, age, sex, blood measurements, etc. Formally, let
M ={1,...,m} be the marker map, and D be a n xm matrix of marker data;
its columns correspond to markers, and rows correspond to observations,
which may be haplotypes or genotypes. If the 7th observation is a haplotype,
then D;; € A; U {0}, otherwise D;; € (A; U{0})2. A; is the set of alleles
at marker j, and 0 denotes a missing allele value. With genotype data the
order of the alleles in a pair is insignificant. Let Y be the vector of trait values
associated with the haplotypes and genotypes. The trait may be dichotomous
or quantitative. In case of haplotypes derived from a trio, one can use the
trait value of the child for the transmitted haplotypes and the trait value
of the respective parent for the non-transmitted haplotypes. Let X be the
matrix containing additional covariates.

The generic HPM works as follows. First, all potentially interesting
haplotype patterns are searched for. Let £ be a language of haplotype
patterns, and ¢ be a qualification predicate over L: ¢(p) is true iff p is a
potentially interesting pattern in the given data set. Practical choices for ¢
set a lower bound for the number of occurrences of a pattern in the data set.
Second, a score is calculated for each marker based on the relevant subset
of potentially interesting patterns. For a given marker, only patterns that
are likely to reflect IBD sharing at the marker are taken into account. Let
s : 2¢ x Perm(Y) — R be a scoring function. Perm(Y) denotes the set
of all permutations of vector Y. The score for marker j given trait vector
Y is s(Q N R;,Y), where @Q is the set of potentially interesting patterns
and R; C L is the set of patterns that are relevant at marker j. Finally,
the statistical significance of the scores is measured, resulting in a P value
for each marker, and an overall P value corrected for testing over multiple
markers. This necessitates the definition of a null hypothesis, and a means
for comparing the observed scores to the distribution of the scores under the
null hypothesis.

HPM does not model the process generating the trait values or marker
data. Therefore we can only test the association between the trait and features
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10 Gene mapping by pattern discovery

of the marker data. The null hypothesis “The values of the trait vector are
independent of the haplotypes and genotypes”’ can be tested by randomizing
the relationship between the two using a permutation test. We require g to be
invariant with respect to permutations of the trait vector. This way we can
enumerate the set of patterns satisfying g once, and use the set for calculating
the marker-wise scores in the permuted data as well.

Algorithm Generic-HPM

Input: Pattern language £, qualification predicate g, scoring function s, marker
data D, trait vector Y and possibly covariates X.

Output: Marker-wise scores y; and P values P; for each marker j, a corrected
overall P value.

Method:

1. Find all potentially interesting patterns: Q@ = {p € L | q¢(p)}
2. Compute the score for each marker j: y; = s(Q N R;,Y)

3. Fori €{1,...,r}, where r is the number of iterations in the permutation test,
do

4. Generate a randomly permuted trait vector Y*) € Perm(Y)

5. Compute the score for each marker j : y(’) =s(@QnN Rj,Y(i))

6. Compute marker-wise P values for each marfqer by contrasting the observed
scores to the samples drawn from the null distributions
7. Compute an overall corrected P value for the best finding

Fig. 1.3. Algorithm for generic HPM. Details are given in the text.

The algorithm for generic HPM is given in figure 1.3. The marker-wise
P value can be used for predicting the location of the DS gene. The marker
with the lowest P value is a natural choice for a point estimate. The corrected
P value is good for assessing whether there is a DS gene in the investigated
region in the first place or not.

1.3.2 Haplotype patterns

Haplotype patterns serve as discriminators for chromosomal regions that are
potentially shared IBD by a set of chromosomes in the data set. Language £
of haplotype patterns consists of haplotypes over subsets of the marker map,
with a few constraints. Marker maps with over hundred markers are not
uncommon today, in the near future maps of several thousands of markers
can be expected. The number of possible haplotypes grows exponentially
with the number of markers in the map. It is not possible to consider all the
possible haplotypes in the analysis, but on the other hand, not all haplotype
patterns are biologically conceivable. Meaningful patterns correspond to IBD
sharing between chromosomes, so markers included in a pattern should form a
contiguous block. Allowing a restricted number of wildcards within a pattern
may be desirable, as there may be marker mutations breaking an otherwise
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1.3 Haplotype patterns as a basis for gene mapping 11

IBD region, or there may be markers having a lot of missing or erroneous allele
values. Additionally, haplotypes extending over very long genetic distances
are highly unlikely to survive over many generations and meioses, and
therefore the set of patterns to be considered can be restricted with an upper
limit for the genetic distance between the leftmost and rightmost markers
that are assigned with an allele.

Let p = [p1 - - - pm] be a haplotype pattern, where p; € A; U{*}, where A;
is the set of alleles at marker j, and = is a wildcard symbol which matches any
allele in the data. Pattern p overlaps marker j, or marker j is within pattern
P, if j is between the leftmost and rightmost markers bound in p (inclusive).
Length of p can be defined as either 1) the genetic distance between the
leftmost and rightmost marker bound in p, or 2) the number of markers
between and including the leftmost and rightmost marker bound in p. We
define language £ of patterns as set of such vectors p = [p; ---pn], where
length(p) < £ and either 1) the number of wildcards (%) within p is at most
w, or 2) the number of stretches of consecutive wildcards within p is at most
g, and the length of such stretches is at most £g. Pattern parameters ¢, w, g,
and {g are given by the user.

Haplotype 7 matches pattern p iff for all markers j holds: p; = * or
pj = D;j. The frequency of pattern p, freq(p), is the number of haplotypes
matching p. With genotype data things are more complicated; a match is
certain only if at most one of the markers assigned with an allele in the
pattern is heterozygous in a genotype. A match is possible if at least one of
the alleles at each marker in the genotype matches the corresponding allele
in the pattern. One possibility for handling the uncertain cases is optimistic
matching, where a genotype matches a pattern if any of the possible haplotype
configurations matches it: genotype ¢ matches pattern p iff for all markers
j holds: p; = x or p; = g1 or p; = g2, where (g1,92) = D;;. In Section
1.4.3 we will show that this simplistic approach works surprisingly well. More
elaborate schemes are possible, e.g. genotypes can be weighted by 2! ", where
n is the number of heterozygous markers in the genotype which are also
assigned with an allele in the pattern.

Ezample 1.3.1. Let p=[+* x 1 % 2 x| be a haplotype pattern over markers
(1,...,6). p overlaps markers 3, 4 and 5 and is matched by for example
haplotype [3 2 1 4 2 0] and genotype [(1,1) (1,2) (1,1) (2,4) (1,2) (2,3)].
Genotype [(1,1) (1,2) (1,2) (2,4) (1,2) (2,3)] may match p, depending whether
allele 1 at marker 3 and allele 2 at marker 5 are from the same chromosome or
not. With optimistic matching, we consider this possible match as a match.

In the instances of HPM we have used, the qualification predicate is
based on a minimum frequency: q(p) = freq(p) > fmin, where the minimum
frequency is either given by the user or derived from other parameters and
some summary statistics of the data such as sample size and the number of
disease-associated and control observations.
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12 Gene mapping by pattern discovery

1.3.3 Scores

The purpose of the scoring function is to produce a test statistic for each
marker, measuring total association of the marker to the trait over all
haplotype patterns that are relevant at the marker. The higher the score,
the stronger the association is. We define the set R; of relevant patterns at
marker j as the set of patterns overlapping marker j.

A very simple—yet powerful—scoring function, used in [21, 22], counts
the number of strongly disease-associated patterns overlapping the marker:

s(Q;,Y)={p€Q; |A,Y') > amin}l, (L.1)

where @; = @ N R;, and A(-) is a measure for pattern—trait association
or correlation. The association threshold ani, is a user-specified parameter.
Table 1.1 illustrates the procedure.

Another scoring function, used in [17, 14], measures the skew of the
distribution of pattern—trait-association in the set of overlapping patterns.
The skew is defined as a distance between the set of P values test of pattern—
trait association tests for the patterns in @); and their expected values if there
was no association:

P(Y")

1
5(Q;,Y') = T Z(Pi(yl) —U;)log U (1.2)
where & = |Q;|, Pi(Y'),...,Py(Y"') is the list of P values sorted into
ascending order, and Uy, ..., U are the expected ranked P values assuming

that there is no association and that patterns are independent, U; = k—j_l

Both scoring functions described above consider each pattern as an
independent source of evidence. In reality, the patterns are far from
independent, but the assumption of independence is a useful approximation.
An ideal scoring function would take the structure in @); into account.

In all current instances of HPM the scoring function measures the pattern—
trait association independently for each pattern. A pattern whose occurrence
correlates with the trait is likely to do well in discriminating the chromosomes
bearing the mutation. What is a meaningful test for this correlation depends
on the type of data. With a dichotomous trait, e.g. affected—unaffected,
association can be simply tested using Z-test (or x2-test) or Fisher’s exact
test for a 2 by 2 contingency table, where the rows correspond to the trait
value and the columns to the occurrence of the pattern:

M N |}
A|nam  nan|na
U |num nun|nu
Sl nm nN | n

Let us assume that there are njy; observations that match pattern p,
and ny observations that do not match p, and that there are np affected

DRAFT
Accepted for publication in 'Data Mining in Bioinformatics'
Jason Wang, Mohammed Zaki, Hannu Toivonen, and Dennis Shasha (Eds.), Springer



1.3 Haplotype patterns as a basis for gene mapping 13

Table 1.1. This table illustrates the computation of marker-wise scores with
association threshold Zmin = 3. The patterns are ordered by the strength of
association. Note that the wildcards within a pattern are included in the score
for that marker.

Pattern M1 M2 M3 M4 Mb M6 Z

p1 * * 2 * 1 * 5.8
P2 * 1 2 1 3 * 4.4
p3 * 2 2 * 1 * 4.0
Pa 1 2 2 * 1 * 3.4
Ps * 1 2 1 3 3 2.8
Score 1 3 4 4 4 0

and ny unaffected observations in total. Let the frequencies in the 2 by 2
contingency table, where the rows correspond to the trait value (A or U),
and the columns to matching (M) or not matching (N) p, be nawm, nan, num
and nyn, respectively. The value of the test statistic

P (naMnUN — NUMPAN)VT
vnunx (nam + nan) (num + nun)

(1.3)

is approximately normally distributed. One- or two-tailed test can be used.
One-tailed test is appropriate if one is only interested in patterns with a
positive correlation to the trait. Assuming that there are no missing alleles
in the data, it is possible to derive a lower bound for pattern frequency given
the association threshold:

fmin =

NANT (1.4)
nen + ne’ )

where z is the association threshold for x? statistic, or the Z threshold
squared (see [21] for details). No pattern with a frequency lower than fmyin
can be strongly associated. Even if there are missing alleles, this lower bound
can be used—it is not imperative that all the strongly associated patterns
satisfy q.

With a quantitative trait one can use the two-sample t-test for identical
means between the group of chromosomes matching the pattern and those
not matching it. The number of degrees of freedom (number of chromosomes
minus two) is usually large enough to justify the use the Z-test instead of the
t-test.

If explanatory covariates are included in the data, one can formulate a
linear model

Yi=a1 Xy + ... +ap X + a1 l; + ap, (1.5)
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14 Gene mapping by pattern discovery

where Y; is the trait value for chromosome i, X;; is the value of the jth
covariate for the ith observation, and I; is an indicator variable for the
occurrence of the tested pattern. Its value is 1 if the pattern matches the ith
observation, otherwise 0. The significance of the pattern as an explanatory
variable can be tested by comparing the best fit model to the best fit model
where a1 = 0.

Missing alleles in the observations are dealt with in a conservative manner:
If an allele is missing at a marker bound in pattern p, and there is a
mismatch in any other marker, then the observation is counted as a mismatch.
Otherwise we cannot know for sure whether p occurs in the observation, and
to avoid any bias we ignore the observation when calculating the association
for pattern p.

1.3.4 Searching for potentially interesting haplotype patterns

Let < be a generalization relation in £: p < p' if any observation matching p’
also matches p. ¢ is monotonous in < if p < p' A ¢(p’) = ¢(p), which is true
for q(p) = freq(p) > fmin- With monotonous g, set @ of patterns satisfying ¢
can be efficiently enumerated using data-mining algorithms [2], or standard
depth-first search (implementation for HPM given in [22]). Otherwise, one
can introduce a monotonous auxiliary predicate ¢, such that ¢(p) = qm(p)-
The set of patterns satisfying g, can be enumerated as described above, and
each of these patterns can then be individually tested for q.

With some choices for ¢ and s it is possible that pattern p does not
contribute to the score of any marker in any permutation of Y even if ¢(p)
holds. Marginal speed-up can be achieved, if ¢ in Step 1 of the algorithm
is replaced with ¢’ : ¢'(p) = q(p) A 35,Y" € Perm(Y) : p contributes to
s(@NR;,Y").

Ezxample 1.3.2. Let us assume Z-test is used with a dichotomous trait,
q(p) = freq(p) > fumin, and s(Q",Y") = {p € Q' | Z(p,Y') > Zumin}-
Maximum value attainable for Z can be calculated based on the numbers of
matching and non-matching observations. If the maximum value is below the
association threshold Z,i,, the pattern is rejected. Given n, nys, nn, na and
ny, the largest Z value is achieved, when nay and nyn are maximized: If
nyM > na then nay = na,num = nm — na,nan = 0, and nyn = ny, else
if nyg > ne then nay = ny,num = 0,maN = nx — ng, and nyn = ng,
otherwise nay = nym,nun = nn, and nany = nym = 0. If negative
associations are considered, the minimum value of the Z statistic has to
be calculated as well. This can be done analogously, by swapping A and U in
the formulae. Similar procedure is possible for Fisher’s exact test.

1.3.5 Evaluating statistical significance

With real data the allele frequencies and marker spacing vary across the
marker map. Consequently, the distribution of scores varies as well, and the
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1.3 Haplotype patterns as a basis for gene mapping 15

scores as such are not necessarily a good indicator of the location of the DS
gene. Instead, the significances of the marker-wise scores should be evaluated.
HPM computes empirical P values for the markers using a permutation test.
Figure 1.4 illustrates a succesful localization with simulated data.

Let y§1), .. .,y](-r) be the sample from the score distribution for marker j
under the null hypothesis, and let y; be the observed score at the marker.
The empirical P value for the marker is then

|{Z € {L---ar} | y]('l) > yj}|
r

pP=

As always with permutation tests, the number of iterations should be
sufficiently large for the P value estimates to be accurate. P ~ %Bin(r, p),

and its standard deviation is 4/ %P(l — P). As a rule of thumb, at the desired
significance level at least 50 iterations should have a score greater than the
critical value, e.g. at a = 0.05 at least 1,000 iterations should be performed.

The marker-wise P values are not corrected for testing over multiple
markers, and they should be understood as a means of ranking the markers
only. However, a single corrected P value for the best finding can be obtained
with another permutation test using the smallest marker-wise P value as the
test statistic. This P value can also be used to answer the question whether
there is a DS gene in the investigated region in the first place or not. The
two nested permutations can be carried out efficiently at the cost of a single
test (see [18] for details).

Observed scores and critical values Significances
100 T T T T T T T T T T

N W~ O
T
1

Score
-log(P)

L A R |/1\_ 0 L /N 1 AN /\m
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Location (cM) Location (cM)

Fig. 1.4. The graph on the left shows the scores (solid line) and critical values at
significance levels a = 0.001, 0.002, 0.005, 0.01, 0.02 and 0.05 (dotted lines) over 101
evenly spaced markers. The graph on the right shows the negated logarithms (base
10) of the corresponding P values. The vertical line denotes the correct location of
the DS gene.
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16 Gene mapping by pattern discovery

1.4 Instances of the generalized algorithm

We present three instances of the generalized HPM algorithm. The original
version for haplotype data and dichotomous trait [21, 22] and QHPM for
quantitative traits and covariates [17, 14] have been previously published.
In this section we introduce a third instance—HPM-G for phase-unknown
genotype data.

We demonstrate the performance of the three instances in various settings
using simulated data. We used the Populus simulation package [21, 13] for
generating realistic data sets for the analyses. In each of the simulations a
small isolated founder population was generated, growing exponentially from
initial 100 people to 100,000 over 20 generations. In each setting, a single
100 ¢cM chromosome was simulated. The marker maps consisted either of
101 microsatellite markers or 301 SNP markers equidistantly spaced over
the chromosome. Denser map was used with SNP markers because a single
SNP marker is much less informative than a microsatellite marker. Each
simulation was repeated 100 times in order to facilitate power analysis. We are
interested in the localization power as a function of the tolerated prediction
error. For example, in Figure 1.5A the 60% curve at 2 ¢cM shows that for
70% of the replicates the predicted location was no more than 2 cM off the
correct location. At the scale of the data sets, a mapping result is considered
acceptable if it narrows down the 100 cM chromosome into a 20 ¢cM or smaller
region.

We did not apply permutation tests in the power analyses, but used the
scores as a basis for the localization instead: the point estimate for the gene
location is the marker with the highest score. This way we were able to carry
out the power analyses in much less time. Because there was no variation
in the marker density over the chromosome and the alleles in the initial
population were drawn from the same distribution for each marker, the score
distributions are likely to be quite similar for all markers. We have previously
shown that on this kind of data it does not make much difference whether
the localization is based on the P values or the scores [21].

1.4.1 Original HPM for haplotype data and dichotomous trait

In the original version of HPM for haplotype data and dichotomous
trait, we use the simple scoring function counting the number of strongly
associated patterns, described in Equation 1.1. The y2-test is used for
measuring pattern—trait-association and only positively associated patterns
are considered. The frequency threshold is derived from association threshold
z using Equation 1.4.

Marker map consisted of microsatellite markers each with one common
allele with frequency 0.4 and four alleles with frequency 0.15. The frequency
of the disease predisposing mutation was approximately 2% in each data set.
The ascertainment of data was conducted as follows: 100 trios with an affected
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1.4 Instances of the generalized algorithm 17

child were randomly chosen from the final population. The haplotypes were
reconstructed from the trios and all uncertain alleles were set to zero denoting
a missing value. The parameters for HPM were the same for all experiments:
maximum lenth for patterns was 7 markers, association threshold was 9 and
one gap of up to two markers was allowed. The execution time was less than
one second without the permutation test, and about 20 seconds with 1,000
permutations for a single replicate on a Pentium4 at 1.4GHz.

First, we simulated data sets with different phenocopy rates ranging from
60% to 90%. The results in Figure 1.5A show that the localization power
reaches its maximum at phenocopy rate between 60%-70%, and decreases
steadily with increasing phenocopy rate as expected.

Next, we assessed the effect of missing data by randomly removing 2%,
5% and 10% of the marker genotypes in the data with 80% phenocopy rate
prior to haplotype reconstruction. This procedure resulted in approximately
8%, 15% and 25% of missing alleles in the haplotype data. Due to haplotyping
ambiguities, ~ 4% of the alleles were missing even if there had not been any
missing genotypes in the trios. The results in Figure 1.5B show that up to
15% there is practically no loss in power, which demonstrates remarkable
tolerance for missing data.

To put the results into perspective, we compare HPM to TDT of
Genehunter2 [8]. With TDT we considered haplotypes up to four markers
in length (maximum in Genehunter2), and used the centerpoint of the
best haplotype as the point estimate. Results (Figure 1.5C) show that at
phenocopy rate of 80% there is virtually no difference between the methods,
but at higher rates HPM is clearly superior.

Finally, we showcase the method on a real Type I diabetes data set [3, 21].
There are 25 markers spanning a region of 14 Mb in the data. Two DS genes
are known to reside in the region, very close to each other. We downsampled
the original data set consisting of 385 sib-pair families to 100 trios (half the
data size we used in [21]). The results obtained with 100,000 permutations
are shown in Figure 1.5D. The marker closest to the genes gives the second
best P value 0.00014. The corrected overall P was 0.0015, indicating that the
observed association is highly unlikely to be a coincidence.

1.4.2 QHPM for quantitative trait and covariates

The diagnostics of a complex disease is often based on a combination of
symptoms and quantitative measurements. For example, a possible diagnosis
is (X1 > AN (X2 > BV S)), where X; and X, are values of two quantitative
subtraits, and S is a proposition for a symptom. Different patients may have
completely different genetic contributors and pathogenesis. It may be easier
to find the quantitative trait loci (QTLs) affecting each of the subtraits
independently than trying to map all the DS genes directly based on the
affection status only.
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18 Gene mapping by pattern discovery
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Fig. 1.5. Performance of HPM. A) Effect of phenocopy rate on localization
accuracy. B) Effect of the amount of missing alleles on localization accuracy. C)
A comparison between HPM and the multipoint TDT of Genehunter2. Phenocopy
rates were at 80%, 85% and 90%. The dotted curve on the bottom of every power
graph denotes the power of random guessing. D) Succesful localization on real
Type 1 diabetes data. The vertical line shows the correct location.

The original HPM can only cope with a dichotomous trait. Generally,
dichotomization of a quantitative variable wastes much of the information.
Additionally, the power of the analysis is sensitive to the cut-off point.
There may be other information about the subjects available, environmental
and other non-genetic factors, e.g. smoking or nutritional habits, and
measurements that are not related with the diagnosis criteria. To be able
to fully utilize the available data, a method should be capable of

e using a quantitative trait as the response variable, and
e using the other measurements as explanatory covariates.
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1.4 Instances of the generalized algorithm 19

QHPM is a version of HPM designed to meet the abovementioned criteria.
It uses the linear model given in Equation 1.5 for measuring pattern—trait
association, and the scoring function given in Equation 1.2. We next assess
the performance of QHPM on simulated data and compare it to QTDT [1], an
accommodated version of TDT. The results have been previously published
in [14].

The simulations were carried out in the manner described in Section 1.4.1,
except that there were only four alleles for each marker; one common allele
with initial frequency 0.4, and three alleles with frequency 0.2. The disease
predisposing mutation was inserted to six randomly chosen chromosomes in
the initial population. Liability for the disease was calculated using formula

L=Ag+ei+ex+r +C,

where ¢ is an indicator variable for the presence of the mutation in
the individual, e; and es are environmental factors, and r; is a random
component. e;, es and r; are drawn from standard normal distribution for
each individual. The strength of the genetic effect is determined by A. The
probability of being affected was given by the ezpit function

L

P(Affected) = 1—|-—L
e

Two models were considered; an easy model with A = 5, and a difficult model
with A = 2. The value of C' was adjusted so that the prevalence of the disease
is 5%. Additionally, five different quantitative variables were calculated from
formula

Qj =jg+el+ex+r2,

where j € {1,...,5} determines the strength of the genetic effect, and rs is a
random component drawn from the uniform distribution in [0,1]. The sample
was ascertained based on the affection status; 200 trios with an affected child
were randomly selected from the final population.

The maximum length of patterns was set to 7 markers, and a single one
marker gap was allowed. Minimum pattern frequency fp,;, was 10. The results
in Figure 1.6 show, that QHPM clearly outperforms QTDT with the difficult
model. With the easy model, QHPM has a slight edge with @5 and @3,
whereas with Q2 QTDT gives better results. @1 turned out to be too difficult
for mapping; neither method could do better than random guessing either
with the easy or the difficult model.

1.4.3 HPM-G for phase-unknown genotype data

Haplotype data is not always easy to obtain, typically the haplotypes are
inferred based on genotypes of family members. The most cost-effective way
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Fig. 1.6. The localization powers of QHPM (solid lines) vs. QTDT (dashed lines)
are illustrated for A) the easy model and B) the difficult model. The curves
correspond to quantitative traits @s,@s, @2 and Q1 in top-down order.

to obtain haplotypes for a case—control study is to genotype family trios, from
each of which four independent haplotypes can be extracted. The efficiency
of genotyping is 2/3, as there in fact are six haplotypes in a trio, and two of
them are read twice. The parents would need to be recruited; however, they
may be deceased, or not willing to participate. Genotyping of these additional
individuals is laborious and elevates the study expenses. Moreover, the phases
cannot always be determined in a trio. Using phase-unknown genotype data
directly for mapping, no extra individuals need to be genotyped, and no data
is missing due to haplotyping ambiguities. Additionally, recruiting problems
are alleviated and there is more freedom in selecting the cases and controls,
including the ratio between the two classes.

The abstract formulation of HPM allows us to easily adapt it for genotype
data. HPM for genotype data (HPM-G) is identical to the original version,
with the exception that optimistic pattern matching is used. All the matches
in the real haplotypes are found, but also a large number of spurious matches,
which introduce noise to the marker-wise scores. Consequently, the number of
frequent patterns found by HPM-G is typically an order of magnitude larger
than by HPM.

In order to compare HPM-G to HPM we simulated both microsatellite
and SNP data sets in the way described in Section 1.4.1. The data sets were
ascertained with equal costs of genotyping, assuming that the haplotypes for
HPM are reconstructed from family trios. The haplotype data sets consisted
of 200 disease-associated and 200 control haplotypes, derived from 100 trios.
The data set for HPM-G consisted of 150 affected and 150 control genotypes.
300 individuals need to be genotyped in both cases.
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1.5 Related work 21

The parameters used in Section 1.4.1 were used as a basis for parameter
settings. With SNP data, the maximum length of patterns was increased
to 19 markers, to give equal maximum genetic length of 6 cM. We used an
50% elevated association threshold for HPM-G, as the expected number of
mutation carriers in genotype data sets was 50% higher than that in the
haplotype data sets. The execution time of HPM-G was about 4 seconds
with microsatellite data, or 6% minutes with SNP data, for a single replicate
(Pentium4, 1.4GHz). With 1,000 permutations the execution times are
approximately 4 minutes and 6 hours, respectively. The execution time of
HPM with SNP data was 6 seconds without permutation test, and 3 minutes
and 40 seconds with 1,000 permutations.

We compared the two methods at four different phenocopy rates both
with microsateelite and SNP data. From the results shown in Figure 1.7A
we can conclude that with microsatellite data HPM-G can tolerate slightly
higher phenocopy rates than HPM with equal genotyping costs. With SNP
data the methods are evenly matched (Figure 1.7B), but the execution time
of HPM-G is much higher. This is due to the fact that with SNP data the
number of spurious matches grows considerably.

A. Microsatellite data B. SNP data
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Fig. 1.7. Comparison of HPM-G and HPM with different phenocopy rates—70%,
80%, 85% and 90% in top-down order. A) Localization accuracy on microsatellite
data. B) Localization accuracy on SNP data.

1.5 Related work

Fine-scale mapping of disease genes by linkage disequilibrium has been
researched intensively since 90’s. Lazzeroni [10] gives a good overview of
the work until 2000. The earliest work relied on methods which measure
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22 Gene mapping by pattern discovery

association between the disease status and one marker at a time, or, in
other words, the LD between a marker locus and the implicit disease locus
[5, 7]. The disease gene is then predicted to be close to the locus with the
highest association. Composite likelihood methods by Devlin et al. [6] and
Terwilliger [20] consider several markers at a time, but do not utilize any
haplotype information.

Service et al. [16] and McPeek and Strahs [11] were among the first to
suggest LD-based haplotype analysis methods. The model by Service et al.
analyzes LD of the disease to three markers at a time and estimates the
disease locus with respect to the three marker loci. McPeek and Strahs
are closer to the HPM approach: their method is based on an analysis
of the length of haplotype sharing among disease chromosomes. Zhang
and Zhao have extended the method to handle phase-unknown genotype
data as well [23]. These methods, like most of previous haplotype-based
methods, are statistically elegant but computationlly demanding. They tend
to be exponential in the number of markers, sometimes in the number of
haplotypes.

The implicit assumption of independent haplotypes in the methods
mentioned above may be very unrealistic in some populations. Parametric
methods by Lam et al. [9] and Morris et al. [12] and non-parametric TreeDT
by Sevon et al. [18] model the genealogical relationships among the observed
haplotypes.

F-HPM, a variant of HPM, has been suggested independently by Zhang et
al. [24]. Tt extends HPM to use pedigree data and quantitative traits by using
a quantitative pedigree disequilibrium test proposed by the same authors.

Linkage analysis is an alternative for LD analysis in gene mapping.
The idea, roughly, is to analyze pedigree data and to find out which
loci are inherited with the disease. Due to the lower effective number of
recombinations, linkage analysis is less suitable for fine mapping than LD
analysis. Transmission/disequilibrium tests (TDT) [19] are a well-established
way of testing both association and linkage in a sample where LD exists
between the disease locus and nearby marker loci.

1.6 Discussion

Gene mapping, the problem of locating disease-predisposing genes, is one
of the early steps in many medical genetics studies that ultimately aim at
prevention and cure of human diseases. The completion of the human DNA
sequence gives a lot of useful information about the genome, in particular
about polymorphisms, whether potentially disease-predisposing or useful just
as markers in gene mapping studies. Availability of the human DNA sequence
does not remove the gene mapping problem, however: we cannot tell from the
DNA sequence alone which gene or polymorphism is associated with which
trait.
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1.6 Discussion 23

From a data mining perspective, the data sets are small. They are,
however, growing fast in dimensionality (number of markers) so mapping
methods need to be scalable in that respect. Discovery of new knowledge
is also an important aspect, even if our discussion has concentrated on
predicting the gene location. Geneticists are interested in the patterns that
show strong correlation with a disease, and they often investigate them
manually, e.g., by constructing possible genealogies to test the plausibility
of a DS gene. Strongly disease-correlated patterns or suitable disjunctions of
them can sometimes also be useful as putative gene tests before the gene is
actually located.

We described Haplotype Pattern Mining, a flexible and generic algorithm
for non-parametric gene mapping. It is based on searching for genetic patterns
that are strongly associated to the trait under study, and on mapping the
disease gene to the genetic region with the most evidence for trait association.
HPM incorporates several characteristic components of a typical data mining
task:

e definition of an application-specific pattern language,
e searching for frequent patterns, and
e evaluating the strength of rules of form pattern — trait.

In principle, HPM falls into the category of predictive data mining
applications. There is a single variable, the trait, that we attempt to explain
using the marker data and possibly other covariates. However, instead of
having the classification or regression accuracy as the objective we are more
interested in the patterns that are used for prediction and where they are
located.

Even though data sets are expected to grow as the laboratory techniques
evolve, the pattern search step will probably not become an issue with
HPM in the near future. The computational burden mainly results from
the subsequent analysis of the pattern set. With a large set of patterns,
the permutation test procedure may be quite time consuming. We already
saw that with phase-unknown SNP genotype data the execution times were
several hours. Ideas for more efficient handling of patterns, e.g., closed
patterns, could be utilized to speed up the permutation test.

An advantage of HPM is that it is model-free, as it does not require any—
potentially misleading—explicit assumptions about population or mode of
inheritance. Experiments show that HPM tolerates high degrees of missing
data and high phenocopy rates. By introducing HPM-G for phase-unknown
genotype data we have significantly extended the scope of HPM: it can now
handle dichotomous or quantitative traits, covariates, SNP and microsatellite
markers, and haplotype or genotype data in any combinations. HPM has a
clear advantage over many parametric methods: as a by-product HPM gives
an explicit list of disease associated patterns accompanied by a variety of
statistics. This output is found very informative for the geneticists.
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24 Gene mapping by pattern discovery

Gene mapping is an iterative process: starting with the whole genome,
the search successively narrows down the region potentially harbouring the
DS genes. New markers are added and possibly new patients are recruited at
each iteration. The first stage—the genome scan—is customarily conducted
as a family study, using linkage analysis, resulting in candidate regions
of 20-30 cM. HPM is best suited to the next stage, where the candidate
regions are further reduced down to only few centiMorgans. However, our
results on simulated data sets indicate that with a dense enough marker
map, HPM could actually be used for a full genome-wide search, at least in
populations where LD is expected to extend over several centiMorgans. This
may become feasible in near future as genotyping becomes less expensive,
and the costs of extra genotyping may become insignificant compared to
the costs and difficulties associated with recruitment of families for linkage
analysis. Experiments reported in [17] suggest that HPM could be applied to
fine-mapping as well—however, proper assessment of the potential for fine-
mapping is yet to be done.
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1.6 Discussion 25

Glossary

Allele A variant form of a marker or a gene.

Basepair, kb, Mb Two complementary bases forming a single step
in a double-stranded DNA or RNA molecule. Length of DNA (or
RNA) sequences is measured in basepairs (bp). 1 kb = 1000 bp,
1 Mb = 1000 kb.

Crossover Reciprocal breakage and reunion of two homologous
chromosomes. Before reunion the partial chromosomes exchange
partners.

Gene A stretch of DNA coding for a protein.

Gene mapping Process which aims at locating a gene affecting a
given trait.

Genotype The genetic code of an individual. Specifically, a marker
genotype is the pair of alleles at the marker, and a (phase-
unknown) multi-marker genotype is a vector of (unordered) allele
pairs over the set of markers.

Haplotype A vector of alleles in a single chromosome over a set
markers or genes.

Identical by descent, IBD Two alleles or haplotypes are identical
by descent, if they have been inherited from a common ancestor
unchanged.

Identical by state, IBS Two alleles or haplotypes are identical by
state, if they cannot be distinguished by laboratory methods.
Linkage Nearby markers tend to be transmitted together.
Linkage between two loci can be expressed quantitatively by
recombination fraction (the probability of the loci being separated

in a single meiosis).

Linkage disequilibrium, LD Nonrandom association of nearby
markers.

Locus (pl. loci) The location of a specific marker or gene in a
chromosome.

Marker A polymorphic stretch of DNA for which the variants can
be reliably detected.

Morgan, M, cM Genetic distance between two loci, measured in
Morgans (M), is defined as the expected number of crossovers
between the loci in a single meiosis. 1 M = 100 cM. On average,
1 cM is roughly 1 Mb, but the ratio varies a lot throughout the
genome.

Penetrance The probability of the occurence of a phenotype given
a genotype.

Phase The parental origin of an allele, maternal or paternal.

Phenocopy A phenotype of non-genetic origin that appears similar
to that of genetic origin.
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26 Gene mapping by pattern discovery

Phenotype An observable characteristic or trait of an individual,
e.g. presence of a disease.

Prevalence The relative frequency of a disease in a population.

Recombination The interchange of genetic material between two
homologous chromosomes during meiosis. In humans this occurs
by crossing over.
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