
A Framework for Path-Oriented
Network Simplification

Hannu Toivonen, Sébastien Mahler, and Fang Zhou

Department of Computer Science and
Helsinki Institute for Information Technology HIIT,
PO Box 68, FI-00014 University of Helsinki, Finland

firstname.lastname@cs.helsinki.fi

Abstract. We propose a generic framework and methods for simplifi-
cation of large networks. The methods can be used to improve the un-
derstandability of a given network, to complement user-centric analysis
methods, or as a pre-processing step for computationally more complex
methods. The approach is path-oriented: edges are pruned while keep-
ing the original quality of best paths between all pairs of nodes (but
not necessarily all best paths). The framework is applicable to different
kinds of graphs (for instance flow networks and random graphs) and con-
nections can be measured in different ways (for instance by the shortest
path, maximum flow, or maximum probability). It has relative neighbor-
hood graphs, spanning trees, and certain Pathfinder graphs as its special
cases. We give four algorithmic variants and report on experiments with
60 real biological networks. The simplification methods are part of on-
going projects for intelligent analysis of networked information.

1 Introduction

In many fields, information is naturally represented as networks of interlinked
people, genes, computers, web pages, concepts, or other objects. Networks or
graphs are a simple yet powerful formalism, but for finding or extracting the
most relevant parts of large networks, intelligent data analysis can be useful.

As an example, consider biological networks and their analysis. Public bio-
logical databases are interlinked and form a huge graph of biological concepts.
Intelligent query mechanisms allow users to extract smaller subgraphs, maxi-
mally relevant to user-specified query nodes [1, 2]. In research efforts such as
Bison [3], heterogeneous information repositories are merged to large networks
which are then analyzed and explored with intelligent methods.

In this paper, we propose a generic framework and methods for simplification
of large, weighted networks. The proposed methods can be used to improve the
understandability of a given graph, to complement user-centric analysis methods,
or as a pre-processing step for computationally more complex methods.

A property of primary interest in many applications is the strength of an
(indirect) connection between some given nodes. Such measures are crucial, for
example, in link prediction. The proposed framework builds on the assumption



2 H. Toivonen et al.

that connections between nodes are measured using the best path between them
and then removes edges while keeping the original quality of connection for all
pairs of nodes.

The elegance of the proposed solution is in its wide genericity. It is applicable
to different kinds of graphs (for example, flow networks and random graphs) and
connectivity can be measured in different ways (for example, by the shortest
path, maximum flow, or maximum probability). The proposed framework has
both relative neighborhood graphs and spanning trees as its special cases.

On the other hand, the assumption that the connection between nodes is
measured with the best path between them is quite strong. This assumption al-
lows, however, a clear specification of the result without reference to an algorithm
that computes it. Since the proposed methods are computationally efficient, they
may be a practical compromise also in applications where more complex mea-
sures of connectivity would otherwise be preferred. We will address this in the
experimental section.

The remainder of this article is organized as follows. We first formalize the
problem of path-oriented network simplification in Section 2. In Section 3 we
present a range of algorithms to prune redundant edges. We briefly review related
work in Section 4. We present and discuss experimental results in Section 5 and
finally draw some conclusions in Section 6.

2 Path-oriented edge and graph redundancy

Our goal is to simplify a given weighted graph G = (V,E) by removing redundant
edges. In this section we define the necessary notations and concepts, we give a
simple theorem that allows efficient pruning, and we give some examples.

2.1 Definitions

We assume a weighted graph G = (V,E) is given. In the following, we assume G is
undirected, but the definitions and methods can be easily generalized for directed
graphs. An edge e ∈ E is a pair e = {u, v} of nodes in V . Each edge has a weight
w(e) ∈ R. A path P is a set of edges P = {{u1, u2}, {u2, u3}, . . . , {uk−1, uk}} ⊂
E. We use the notation u1

P
 uk to say that P is a path between u1 and uk, or,

equivalently, to say that u1 and uk are the endvertices of P .
In order to allow different definitions of redundancy, we parameterize our

problem and methods with a path quality function q : {P | P is a path in G} →
R. Without loss of generality, we assume that larger values of q indicate higher
quality; this assumption can be easily reversed if necessary.

A natural and simple way to measure relatedness between two nodes u and
v in a weighted graph is to consider the quality of the best path between them.
This best path quality Q is thus defined as Q(u, v; E) = max

P⊂E:u
P
 v

q(P ). If u

and v are not connected, Q(u, v; E) = −∞.



Path-oriented network simplification 3

In this paper, we will study the problem of pruning a graph without affecting
the best path quality for any pair of nodes. We say that an edge e ∈ E is
redundant if and only if

Q(u, v; E) = Q(u, v; E \ {e}) for all {u, v} ∈ V, (1)

in other words, if the best path quality Q does not depend on edge e for any
nodes u, v in G.

Fig. 1: Edge e is
redundant.

Figure 1 illustrates the idea in a small graph. Here edges
have lengths, and the length of an edge or a path corresponds
to the length of the edge or path in the drawing of Figure 1
(i.e., path length is not defined by the number of edges in it).
Now, while there is a direct edge e = {u, v} between nodes u
and v, there exists a shorter path between them. Since edge
e does actually not belong to the shortest path between any
pair of nodes in the graph, pruning it has no effect on any shortest path.

A non-redundant graph is a graph that contains no redundant edges. We
define a completely pruned graph as a non-redundant graph that maintains the
best path quality of the original graph for all its node pairs. Formally: given a
graph G = (V,E), a completely pruned graph H = (V, F ) is one where F ⊆ E,
and Q(u, v; E) = Q(u, v; F ) for all u, v ∈ V , and H is non-redundant.

A couple of notes about pruning redundant edges that are in order, especially
for the case in which node weights and path qualities may have ties: First, the
trivial approach of taking the union of the best paths between all pairs of nodes
does then not necessarily lead to a completely pruned graph, since ties might
be solved differently for different pairs of nodes; second, a given graph may not
have a unique completely pruned subgraph.

2.2 Monotone path quality functions

Many path quality measures q are monotone in the sense that replacing a seg-
ment of a path by a better one with respect to q never decrease the quality of
the whole path. Formally, let R and S be two paths with identical endvertices.
Function q is monotone if for any path P containing R as a subpath, i.e., P ⊃ R,
we have

q(R) ≤ q(S)⇒ q(P ) ≤ q(P \R ∪ S). (2)

Monotonicity is a natural property for many path quality functions but not
for all. Consider, for instance, average edge weight. A path consisting of edges
with weights 10, 2, 1, 2, 10 has a smaller average weight (5) than an alternative
path with weights 10, 1, 10 (average weight 7), even though the average of 2, 1, 2
is larger than 1.

Monotonicity of path quality allows efficient pruning, as shown by the fol-
lowing theorem. We omit the proof for brevity.

Theorem 1. Let G = (V,E) be a graph and e ∈ E an edge with endvertices

w1 and w2, in other words w1
{e}
 w2. Edge e is redundant if and only if there



4 H. Toivonen et al.

exists another path S ⊂ E : w1
S
 w2, e 6∈ S, between the endvertices such that

q(S) ≥ q(e).

Theorem 1 says that redundancy of an edge (such as e in Figure 1) with
respect to all pairs of nodes is equivalent to its redundancy with respect to its
own endvertices. This means that edge redundancy can be evaluated efficiently
by just checking if there is a path between the endvertices (u and v) which is at
least as good as the direct edge. Redundancy with respect to all other pairs of
nodes follows.

The following corollary is a special case of Theorem 1 for paths of length two.

Corollary 1. Let G = (V,E) be a graph and e = {u, v} an edge in E. Edge e
is redundant if there exists a path S = {{u, w}, {w, v}} such that q(S) ≥ q(e).

Corollary 1 gives an even faster way of identifying some redundant edges: for
each edge e, find the shared neighbors w of the endvertices u, v and check if the
path from u via w to v is at least as good as edge e itself. Obviously, this test
cannot be used to infer non-redundancy of edges.

In Section 3 we will present algorithms that use Theorem 1 and Corollary 1
to solve the pruning problem with different trade-offs between completeness of
pruning and time complexity.

Next, however, we give examples of different path quality functions q one
could use in specific graph contexts.

2.3 Example instances of the framework

Flow networks are graphs where edge weights define their capacities. The
maximum capacity c(P ) of a path is limited by each of its edges: c(P ) =
min{u,v}∈P w({u, v}). The use of c as path quality function would guarantee
that the amount of flow that the best path has is always conserved. The global
property of network flow is much more commonly used; we will return to this in
the experimental section.

(a) Conserve amount of best flow (b) Conserve highest probability

Fig. 2: Simplification of different types of graphs

Using the path capacity c above as path quality function actually has the
property that completely pruned graphs are spanning trees that maximize the
smallest edge weight in the tree (Figure 2a). Arbitrary spanning trees could
be obtained by simply defining q(P ) = 1, in other words, q indicates that the
endpoints of path P are connected.



Path-oriented network simplification 5

As a more complex example, assume that the weight w(e) ∈]0, 1] of an edge is
the probability that the connection exists, and that edges are mutually indepen-
dent. Such graphs are called probabilistic or Bernoulli random graphs. The best
path is the one that most likely exists; the probability of a path P is simply the
probability that all of its edges co-exist: q(P ) =

∏
{u,v}∈P w({u, v}). Figure 2b

illustrates network simplification with this path quality function.
Shortest paths are commonly looked for in networks where edge weights cor-

respond to distances between nodes. This is an example of a setting where the
path quality—in this case path length—should be minimized rather than max-
imized. It is easy to change the definitions of this paper. Alternatively, one can
transform the weights w(e) to w′(e) = e−w(e) and use the same multiplicative q
that was defined above for probabilistic networks.

A relative neighborhood graph discards those edges whose endvertices have a
shared neighbor that is closer to both endvertices than the endvertices are to each
other. Again, edge and path qualities are measured by distances, so we need to
minimize q(P ) = max{u,v}∈P w({u, v}). An alternative is to transform w′(e) =
1/w(e) and use the path quality function q defined above for flow networks. In
either case, paths of at most two edges should be considered (cf. Corollary 1).

3 Algorithms

3.1 Variations

The four algorithmic variants we next present result from two axes of variation:
(A) whether to use Theorem 1 or Corollary 1 to search and identify redundancies,
and (B) whether to perform iterative search or static search.

Strategies to identify redundancy Based on Theorem 1, the global best path search
determines the redundancy of an edge by finding and evaluating the best path
connecting its endpoints (and not including the edge itself). By the theorem,
global best path search guarantees correct identification of redundancy.

Triangle search, in turn, takes advantage of Corollary 1 and identifies non-
redundancy by only checking paths consisting of two edges. In other words, tri-
angle search is based on 3-cliques search. Triangle search misses some redundant
edges but is faster than global best path search.

Iterative versus static pruning The iterative variant works dynamically: changes
to the graph take effect immediately and may affect the redundancy of other
edges. Iterative pruning results in a completely pruned graph. The result is not
unique but depends on the order in which edges are processed.

The static variant, in turn, determines the redundancy of all edges in a single
batch, based on the original graph only. Then, all redundant edges are removed.

There is another important difference between the static and iterative vari-
ants. If the static method would be applied directly based on the definition (1),
pruning would be too aggressive. In the case of ties, too many edges would be re-
moved, affecting some best path qualities, possibly even leading to disconnected



6 H. Toivonen et al.

components. Therefore an edge is removed only when the quality of the best
path is strictly higher than the quality of the edge. This guarantees that all best
path qualities are maintained. Static pruning thus prunes less edges than the
iterative variant, and does not necessarily produce a non-redundant graph. The
static method is faster, however, and its result is unique.

3.2 Outlines of algorithms

Of the four algorithmic variants that we present, the Iterative-Global variant is
the most complete and the only one guaranteed to produce a completely pruned
graph. It is outlined as Algorithm 1. It first converts a multigraph (with parallel
edges) into a simple one (Line 2). Then it finds, for each edge, the best possible
alternative path P (Line 4). If it is at least as good as the edge, then the edge
is pruned as redundant (Line 6).

Algorithm 1 Iterative-Global Algorithm
Input: A weighted graph G(V, E), a path quality function q
Output: Subgraph H ⊂ G
1: F ← E
2: If F contains parallel edges, prune all but the best one.
3: for each e = {ui, uj} ∈ F do
4: Find path P = {{ui, ui+1}, . . . , {uj−1, uj}} ⊂ F \ {e} that maximizes q(P )
5: if q(e) ≤ q(P ) then
6: F ← F \ {e}
7: Return H = (V, F )

A straightforward implementation of the multigraph processing takes O(|E|2)
time (Line 2). On Line 4, we use Dijkstra’s algorithm with a complexity
of O

(
(|E| + |V |) log |V |

)
to find the best path. This is done for all |E| edges.

The computational complexity of the whole Iterative-Global method without
any optimizations is then O

(
|E|(|E|+ |V |) log |V |

)
.

The Iterative-Triangle algorithm is very similar to the Iterative-Global one.
The only difference is that on Line 4 of Algorithm 1 the best path search is
replaced by the triangle search:

4: Find path P = {{ui, uk}, {uk, uj}} ⊂ F \ {e} that maximizes q(P ).

The computational cost of a triangle search for a single edge is O(|V |). The total
time complexity of Iterative-Triangle is thus O(|E|2 + |E||V |).

The Static-Global method, outlined in Algorithm 2, differs from Iterative-
Global in two respects. First, all best paths are computed in a single batch in
the set E of original edges (Lines 3–4). Second, the path quality check on Line 6
requires proper inequivalence.

Our implementation computes all-pairs shortest paths in time O(|V |(|E| +
|V |) log |V |). The total time complexity is thus O(|E|2 + |V |(|E|+ |V |) log |V |).
This could be improved slightly by using Johnson’s algorithm [4].



Path-oriented network simplification 7

Algorithm 2 Static-Global Algorithm
Input: A weighted graph G(V, E), a path quality function q
Output: Subgraph H ⊂ G
1: F ← E
2: If F contains parallel edges, prune all but the best one.
3: for each e = {ui, uj} ∈ F do
4: Find path P = {{ui, ui+1}, . . . , {uj−1, uj}} ⊂ E \ {e} that maximizes q(P )
5: for each e = {ui, uj} ∈ F do
6: if q(e) < q(P ) then
7: F ← F \ {e}
8: Return H = (V, F )

The Static-Triangle variant is again very similar to the global one, and the
difference is again only to replace best path search on Line 4 of Algorithm 2 with
the triangle search:

4: Find path P = {{ui, uk}, {uk, uj}} ⊂ E \ {e} that maximizes q(P ).

The Static-Triangle variant is the fastest and the least complete of the four vari-
ants. Its worst-case computational complexity is identical to Iterative-Triangle.
However, as pruning takes place during the process, the complexity is typically
lower.

4 Related work

Literature on network simplification and subgraph extraction is next. Here, we
review some main approaches and their representatives.

Simplification of flow networks aims at removing edges while not affecting
network flow for any node pair. This implies that the problem setting is more
conservative than the one studied here. The methods proposed in [5, 6] are based
solely on the topology of the graph, not the weights. Generalization of those
methods to other kinds of graphs is a topic for possible further work.

Pathfinder networks [7, 8] are in many aspects similar to our pruned graphs
and the global algorithm variants. The formulation is parameterized by r, to
define Minkowski distance measure for pairs of nodes, and by q, a maximum
path length considered (in other words, triangle search corresponds to q = 2
and global search to q = |N | − 1). Pathfinder networks then keep edges for
which no better path exists with respect to r and q. While originally proposed
for psychological research, Pathfinder networks are now gaining popularity in
visualization of very large co-citation networks.

Neighborhood graphs originate from computational geometry. Given a set
of points in some space, the task is to link proximal points by edges. When
exactly to link two points varies between methods. A popular instance is Relative
Neighborhood Graph [9], where an edge connects u, v ∈ V if and only if d(u, v) ≤
max(d(u, z), d(z, v)). See Veltkamp [10] for an overview of geometric graphs.



8 H. Toivonen et al.

The idea of relative neighborhood graphs can be applied to regular graphs—the
distance between two nodes is the weight of the edge connecting them, or infinite
if none exists. This is a special case of the framework proposed here.

Minimum spanning tree extraction is an old problem with specific solu-
tions [11, 12]. The model proposed in this paper can be used to find spanning
trees, among others, but not necessarily minimal ones.

5 Experiments

To assess the methods proposed in the previous sections, we conducted exper-
iments with various real graphs from the biomedical domain. With the exper-
iments we aim to find initial answers to the following questions. How many
edges are removed? How do the removed edges affect more complex measures of
relatedness? What are the removed edges like semantically? How efficient and
scalable are the methods?

5.1 Experimental setup

Our data source is the Biomine database [1] which integrates information from
twelve major biomedical databases. In the Biomine graph, nodes are biological
entities such as genes, proteins, and biological processes. Edges correspond to
known or predicted relations between entities, and have weights between 0 and 1.

For the tests, we picked 60 pairs of genes, such that each pair was related to
the same phenotype according to Köhler et al. [13]. For each pair, the Biomine
search engine1 was then used to obtain a 500 node subgraph that contains the
neighborhoods of the two given nodes. (Pairs whose neighborhoods were not
connected were discarded.) For scalability tests, we additionally obtained a series
of graphs for each pair, with sizes increasing from 500 to 3000 nodes.

We experimented with two classes of graphs, flow graphs and probabilistic
ones, to get a perspective on the performance of the methods in different settings.
In both cases, we directly used the weights provided by Biomine as the capacities
or probabilities, respectively.

The algorithms were implemented in Java. Best paths were computed using
a separate tool kindly provided by Lauri Eronen. All tests were run on standard
PCs with x86 64 architecture with Intel Core 2 Duo a 3.16GHz, running Linux.

5.2 Results

5.2.1 How many edges are removed? We first evaluate the effectiveness
of the methods in terms of the number of edges removed. Given a transformation
of a graph G = (V,E) to H = (V, F ), we measure the relative size reduction
s = (|E| − |F |)/|E|.
1 biomine.cs.helsinki.fi



Path-oriented network simplification 9

The results obtained for flow graphs are shown in Figure 3a. The Iterative-
Global variant is the most effective, pruning even more than 30% of edges on av-
erage. Static-Global follows, pruning approximately 25%. The two Triangle vari-
ants have roughly equal performance, both pruning slightly less than 20%. Fig-
ure 3b shows the results obtained for probabilistic graphs. The fraction of edges
removed by Global variants is around 9%, and for Triangle variants around 7%.

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.1

0.2

0.3

0.4

IG IT SG ST

(a) Flow graphs

●

●

●

●

●

●

0.00

0.05

0.10

0.15

IG IT SG ST

(b) Probab. graphs

●●

●

●●0.0

0.2

0.4

0.6

0.8

1.0

IG IT SG ST

(c) Max. flow

●

●

●
●

●

●

●

●

●

●

0.00

0.01

0.02

0.03

0.04

0.05

IG IT SG ST

(d) Reliability

Fig. 3: (a) and (b): Fraction of edges removed by each of the four algorithmic vari-
ants. (c) and (d): Fraction of more complex measures lost in simplification. Each
boxplot shows the distribution of results over 60 test graphs. IG=Iterative-Global,
IT=Iterative-Triangle, SG=Static-Global, ST=Static-Triangle

In absolute numbers, flow graphs lost approximately 120 to 240 edges out of
740 original ones. Probabilistic graphs lost approximately 50 to 60 edges. The
results indicate that a relatively large number of edges can be removed without
affecting the best path connectivity between any pair of nodes.

5.2.2 What are the effects on more complex connectivity measures?
In order to get a better understanding of the characteristics of the proposed
methods, we next evaluate their effect on some other measures.

Effect on maximum flow For flow networks, a natural measure of connectivity
between two given nodes is the maximum total flow from one node to the other,
using all possible paths. In each of the graphs in our experiments, we also mea-
sured the maximum flow between the two nodes originally used to obtain the
graph, computed with the Edmonds-Karp algorithm [14].

Figure 3c shows how much the maximum flow was reduced by each of the
four algorithmic variants; f = ((MaxFlow(G) − MaxFlow(H))/MaxFlow(G).
Iterative-Global loses approximate 80% of the flow capacity, closely followed by
Static-Global. The Triangle variants only lose about 30% on average. (Iterative-
Triangle seems to have lost slightly less flow capacity than Static-Triangle, but
this difference is due to handling edges in random order.)

Effect on graph reliability In a probabilistic graph, the two-terminal network
reliability (ttnr) is a natural measure of global connectivity between two given
nodes [1]. The reliability can be estimated with a Monte Carlo approach: generate



10 H. Toivonen et al.

a large number of realizations of the probabilistic graph, and count the relative
frequency of graphs containing a path between the two given nodes. In our
experiments, we used 10 million Monte Carlo realizations in the evaluation of
each graph to minimize estimation error.

Figure 3d shows the relative loss of reliability, r = (ttnr(G) −
ttnr(H))/ttnr(G). All relative losses of Global variants are below 4%, and on
average below 0.5%. Relative losses of Triangle variants are even less. In other
words, edge pruning based on the best path quality had almost no effect on the
more global network reliability.

5.2.3 What are the removed edges like semantically? An interesting
issue is what the pruned edges are like. In Biomine, certain types of edges can
be considered elementary; they connect entities that strongly belong together in
biology. These include genes and the proteins they code for, homologous genes
(in other words, the genes are essentially the same but in different organisms),
and synonyms. An expert user most likely would not like any of these links to be
pruned. On the other hand, since these relations are so elementary, other nodes
need (and should) be connected to only one of them; the other connections could
be considered semantically irrelevant.

With this idea, we designed the following experiment. We defined the edge
types codes for, is homologous to, subsumes, and has synonym as “important.”
Then, we computed the number of those edges, adjacent to an important edge,
that are “semantically irrelevant.” For the sake of completeness, we also counted
the number of “other edges” that are neither important nor adjacent to any
important edge.

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

Global Triangle

0.00

0.02

0.04

0.06

0.08

(a) Import.

● ●

Global Triangle
0.0

0.2

0.4

0.6

(b) Irrelev.

Global Triangle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Other

●

●

●

●

●

Global Triangle

0.2

0.4

0.6

0.8

1.0

(d) Parallel

0.001

0.01

0.1

1

10

100

1000

10000

500 1000 1500 2000 2500 3000

S
ec

on
d

Number of nodes in the input graphs

IG
SG

IT
ST

(e) Running times

Fig. 4: (a)–(d): Shares of different semantic categories among all removed edges (static
methods in probabilistic graphs; note different vertical scales). (e): Mean running times
(in logarithmic scale) of 60 runs as functions of the size of the input flow network.

An analysis of the edges removed by the simplification method in proba-
bilistic graphs shows that practically none of the removed edges were important
(Figure 4a), 32–56% were irrelevant (b), and 12–48% were “other edges” (c), in
other words those on which our crude semantic classification could not decide,
and 15–33% were parallel ones (d). Looking at each of the semantic categories,



Path-oriented network simplification 11

we observe that about 22–30% of semantically irrelevant edges were pruned, and
2–7% of other edges (results not shown). Even though the last percentage seems
low, the category is by far the largest and, as stated above, stands for 12–48% of
all removed edges. The results indicate that in our application the simplification
method could considerably complement and extend expert-based or semantic
methods, while not violating their principles.

5.2.4 How efficient and scalable are the methods? Finally, we compare
running times of the four variants. For this purpose, we used differently sized
variants from 500 to 3000 nodes for each of the 60 graphs.

The mean running times for flow graphs are given in Figure 4e (results are
similar for probabilistic graphs). Static-Triangle always needed less than 0.1
second to complete, even for a graph consisting of 3000 nodes. (The other variants
were considerably slower. However, this comparison is not fully fair and should be
considered at most indicative: Since the best path computation was implemented
by an external tool, the global versions and especially the iterative versions
suffered from the unnecessary cost of repetitive passing of graph files and starting
new processes.)

6 Conclusion

We have addressed the problem of network simplification. The viewpoint is path-
oriented: In the simplified network, and for any pair of its nodes, the best path
qualities have been maintained. The framework is applicable to a large variation
of network types and path qualities, some of which we illustrated with examples.
Example instances include relative neighborhood graphs, spanning trees, and
certain Pathfinder graphs.

Based on properties of monotone path quality functions, we gave four al-
gorithmic variants of varying computational complexity that simplify a given
network with varying degrees of completeness. Experiments performed on 60
real biological networks illustrate the potential of this approach. A rough se-
mantic analysis of the simplification indicates that in our experimental setting,
practically no semantically important edges were removed. Instead, the pro-
posed method could complement semantics-based simplification by identifying
additional redundant edges.

The simplification methods are part of larger on-going, system-oriented
projects (Bison2 and Biomine3) aimed at intelligent analysis of networked in-
formation. One of the next steps is validation of the simplification methods in
user studies. For future work, an interesting topic is further generalization of the
framework to more greedy network compression where some loss of best path
qualities could be traded against removal of more edges.

2 www.bisonet.eu
3 biomine.cs.helsinki.fi



12 H. Toivonen et al.

Acknowledgements We would like to thank Lauri Eronen, Kimmo Kulovesi,
Laura Langohr, Petteri Hintsanen, and Courtney Schirf for their help. This work
has been supported by the Algorithmic Data Analysis (Algodan) Centre of Ex-
cellence of the Academy of Finland and by the European Commission under the
7th Framework Programme FP7-ICT-2007-C FET-Open, contract no. BISON-
211898.

References

1. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biologican databases. In Leser, U., Naumann, F., Eckmann,
B., eds.: 3rd International Workshop on Data Integration in the Life Sciences 2006
(DILS’06). Volume LNBI 4705. Springer-Verlag, Berlin/Heidelberg (2006) 35–49

2. Hintsanen, P., Toivonen, H.: Finding reliable subgraphs from large probabilistic
graphs. Data Mining and Knowledge Discovery 17 (2008) 3–23

3. Berthold, M.R., Dill, F., Kötter, T., Thiel, K.: Supporting creativity: Towards
associative discovery of new insights. In: Advances in Knowledge Discovery and
Data Mining. Volume LNCS 5012. Springer, Berlin/Heidelberg (2008) 14–25

4. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. Journal
of the ACM 24(1) (1977) 1–13

5. Biedl, T.C., Brejova, B., Vinar, T.: Simplifying flow networks. In: Mathematical
Foundations of Computer Science 2000. Volume LNCS 1893. Springer-Verlag,
Berlin/Heidelberg (2000) 192–201

6. Misiolek, E., Chen, D.Z.: Two flow network simplification algorithms. Information
Processing Letters 97 (2006) 197–202

7. Schvaneveldt, R., Durso, F., Dearholt, D.: Network structures in proximity data.
In: The Psychology of Learning and Motivation: Advances in Research and Theory.
Volume 24. Academic Press, New York 249–284

8. Quirin, A., Cordon, O., Santamaria, J., Vargas-Quesada, B., Moya-Anegon, F.: A
new variant of the pathfinder algorithm to generate large visual science maps in
cubic time. Information Processing and Management 44 (2008) 1611–1623

9. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognition 12(4) (1980) 261–268

10. Veltkamp, R.C.: The gamma-neighborhood graph. Computational Geometry 1
(1991) 227–246

11. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society 7 (1956)
48–50

12. Osipov, V., Sanders, P., Singler, J.: The filter-kruskal minimum spanning tree
algorithm. In Finocchi, I., Hershberger, J., eds.: ALENEX, SIAM (2009) 52–61

13. Köhler, S., Bauer, S., Horn, D., Robinson, P.: Walking the interactome for prior-
itization of candidate disease genes. American Journal of Human Genetics 82(4)
(April 2008) 949–958

14. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the Association for Computing Machinery 19(2)
(1972) 248–264


