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ABSTRACT 
We introduce and evaluate TreeDT, a novel gene mapping method 
which is based on discovering and assessing tree-like patterns in 
genetic marker data. Gene mapping aims at discovering a 
statistical connection from a particular disease or trait to a narrow 
region in the genome. In a typical case-control setting, data 
consists of genetic markers typed for a set of disease-associated 
chromosomes and a set of control chromosomes. A computer 
scientist would view this data as a set of strings. 
TreeDT extracts, essentially in the form of substrings and prefix 
trees, information about the historical recombinations in the 
population. This information is used to locate fragments 
potentially inherited from a common diseased founder, and to map 
the disease gene into the most likely such fragment. The method 
measures for each chromosomal location the disequilibrium of the 
prefix tree of marker strings starting from the location, to assess 
the distribution of disease-associated chromosomes. 
We evaluate experimentally the performance of TreeDT on 
realistic, simulated data sets. We also compare the results to those 
obtained using TDT (transmission/disequilibrium test), an 
established method for gene mapping, and Haplotype Pattern 
Mining (HPM), an earlier data mining method. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – data 
mining, scientific databases 
J.3  [Life and Medical Sciences]:  Biology and Genetics 
G.3 [Probability and Statistics]:  Statistical Computing 

General Terms 
Algorithms, Experimentation. 

Keywords 
Gene mapping, algorithms, permutation tests, prefix trees. 

1. INTRODUCTION 
Gene mapping aims at discovering a statistical connection from a 
given trait or disease to a narrow region in the genome, which can 

then be further investigated by laboratory methods for a gene that 
affects the trait. In particular, the discovery of new disease 
susceptibility genes can have an immense importance for human 
health care. The gene and the proteins it produces can be analyzed 
to understand the disease causing mechanisms and to design new 
medicines. Further, gene tests on patients can be used to assess 
individual risks and for preventive and individually tailored 
medications. Obviously, gene mapping is receiving increasing 
interest among medical industry. 

Genetic markers along chromosomes provide data that can be 
used to discover associations between patient phenotypes (e.g., 
diseased vs. healthy) and chromosomal regions (i.e., potential 
disease gene loci). The growing number of available genetic 
markers, anticipated to reach hundreds of thousands in the next 
few years, offers new opportunities but also amplifies the 
computational complexity of the task. 

We introduce TreeDT, a novel method for gene mapping. It 
analyses the observed strings of markers by constructing tree-
structured patterns that reflect the possible genetic history of a 
disease susceptibility (DS) gene. The gene is then predicted to be 
where the strongest genetic contribution is visible in the trees. The 
contributions of TreeDT are:  

(1) a novel approach to gene mapping using tree patterns,  
(2) an efficient algorithm for generating and testing tree patterns,  
(3) a method for estimating the statistical significance of findings. 

For reasons of brevity we focus on the first two in this paper. We 
evaluate the method experimentally with realistic, simulated data, 
and compare it to previous state of the art methods in gene 
mapping.  

2. PROBLEM BACKGROUND 
Let us assume the goal is to locate a disease-susceptibility gene 
for a given disease. We next briefly review the genetic 
background; without loss of generality, we restrict the discussion 
in this paper to one chromosome. 

Marker Data  A genetic marker is a short polymorphic region in 
the DNA, denoted here by M1, M2, …. The different variants of 
DNA that different people have at the marker are called alleles, 
denoted in our examples by 1, 2, 3, …. The number of alleles per 
marker is small: typically less than ten (for so called microsatellite 
markers) or exactly two (for so called SNPs). The collection of 
markers used in a particular study is its marker map, and the 
corresponding alleles in a given chromosome constitute its 
haplotype (Figure 1). It is a major task of a gene mapping study to 
design the marker map and to obtain the haplotype data. That is, 
however, where we start, and for the purposes of this paper the 
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input data consists of haplotypes of diseased and control persons 
– or, in computer science terms, aligned allele strings, classified to 
positive and negative examples. 

Linkage disequilibrium  All the current carriers of a disease-
susceptibility gene have inherited it from a founder who 
introduced the gene mutation to the population (Figure 2). If there 
has been only one such founder, then current carriers are related 
and segments from the mutation carrying founder chromosome are 
over-represented among the affected at mutation locus. It can then 
be possible to observe linkage disequilibrium (LD), non-random 
association between nearby markers.  

Gene Mapping  In diseases with a reasonable genetic 
contribution, and especially in population isolates where few 
founders have introduced the mutation, affected individuals are 
likely to have higher frequencies of founder alleles and haplotype 
patterns near the DS gene than control individuals. This is the 
starting point of LD-based mapping methods: where does the set 
of affected chromosomes show linkage disequilibrium? The 
problem is far from trivial, however. The coalescence process is 
stochastic; mutation carriers often only have a higher risk of being 
diseased than non-carriers, and in a case–control study both 
groups are usually mixes of carriers and non-carriers; finally, 
there is missing information. 

Summary of Background and Problem  Genetic markers 
provide an economical, sparse view of chromosomes. Even 
sparsely located markers can be very informative: given an 
ancestor with a mutated gene, the descendants that inherit the 
gene are also likely to inherit alleles of nearby markers. The exact 
probability of inheriting any combination of markers depends on 
the gene location with respect to the markers, the population 
history or the coalescence history, and marker mutations; all of 
these are unknown.  

Our framework consists of a case–control setting, where the input 
consists of haplotypes. Each individual contributes a chromosome 
pair, so the number of chromosomes is twice the number of 
individuals. We ignore the fact that chromosomes come in pairs 
and simply consider the input data as consisting of a set of 
disease-associated haplotypes (from the cases) and a set of control 
haplotypes. 

The LD-based gene mapping problem is now the following. The 
input consists of a marker map, and a set of disease-associated 
haplotypes and a set of control haplotypes on the given map. The 
task is to predict the location of a disease susceptibility gene on 
the map. 

3. Method 
For any pair of chromosomes in the sample there has been a 
common origin in the population history, an ancestral 

chromosome at which their paths have diverged. Due to 
recombinations different parts of chromosomes have different 
histories, and at any given location the chromosomes in the 
sample and their most recent common origins form a coalescence 
tree. In the coalescence tree for the DS gene location, all the 
chromosomes in one or more subtrees carry the DS mutation, and 
we should observe excess of disease-associated haplotypes as the 
leaves of these subtrees. Looking at coalescence trees for various 
locations, the closer the location is to the DS gene the more and 
larger subtrees are identical to those in the tree at the DS gene 
location. 

Based on the observed haplotypes, TreeDT evaluates the most 
likely coalescence tree at a number of locations along the 
analyzed chromosome, and then assesses the subtree clustering of 
disease-associated haplotypes in these trees. For the latter task we 
introduce a novel tree disequilibrium test, intended for predicting 
DS gene locations. The vicinity of the location for which the test 
gives the lowest p value is the most likely candidate area for the 
DS gene location. The method also computes the corrected overall 
p value for the best finding. It can be used for predicting whether 
the chromosome carries a DS gene at all or not. 

Haplotype Prefix Trees  Given a location in the chromosome – a 
potential gene locus – the haplotypes to the right (or to the left) of 
the location can be organized into a prefix tree (Figures 3 and 4). 
The tree structure may be considered as a possible coalescence 
tree for the location, with the following exceptions: 1) The order 
of nodes may differ from that in the true coalescence tree, e.g., in 
Figure 4, 34--- might actually be a more recent node than 3411-. 
However, because the expected length of the shared region of two 
chromosomes decreases monotonically as the time from their 
divergence increases, it is easy to see that the order given by 
subsumption is the most likely one. 2) Because haplotypes may 
also share a substring by chance, the internal nodes may represent 
a combination of nodes in true coalescence tree.  
Instead of considering alternative coalescence trees leading to the 
same observed haplotypes, TreeDT uses the unique haplotype 
prefix tree as a canonical representation of such a set of 
coalescence trees. TreeDT builds two prefix trees, one to the left 
and one to the right, between each pair of consecutive markers 
and tests their disequilibrium. 

Tree Disequilibrium Test  The tree disequilibrium test for a 
haplotype (prefix) tree T tests the alternative hypothesis The 
distribution of the disease-association statuses deviates in some 
subtrees of T from the overall distribution of statuses against the 
null hypothesis The disease-association statuses are randomly 
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3  2  2  5  3  1  3  4  1  6       haplotype 
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Figure 1. A marker map of ten markers and a sample 
haplotype consisting of alleles in adjacent markers. 
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Figure 2. A carrier of the mutation in generation 20 has 
inherited alleles from the ancestral chromosome in generation 

0 around the gene locus. 



distributed in the leaves of T. TreeDT identifies the set S of 
subtrees in which the observed status distribution deviates most 
from the expectation under the null hypothesis. In the next 
subsection we discuss how to estimate the significance of the 
deviation as a p value and to use in gene mapping.  

For measuring the disequilibrium, we use a variant of the Z test. 
The test statistic Zk for a tree with k deviant subtrees T1, …, Tk is 
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where ai is the number of disease-associated haplotypes and ni the 
total number of haplotypes in subtree Ti ∈ S, and p is the 
proportion of disease-associated haplotypes in the sample. The 
score measures the distance of the observed number of disease-
associated chromosomes (ai) from the expectation (ni p) in 
standard deviations (square root of ni p (1-p)), under the 
assumption of binomial distribution with parameters ni and p. We 
use a one-tailed test, since we are interested only in subtrees in 
which the proportion of disease-associated haplotypes is greater 
than expected. 

We could use a 2×(k+1) χ2-statistic as a measure of deviation for a 
given subtree set S. The χ2-statistic, however, is not easily 
maximized in the space of all possible subtree sets and is therefore 
not a very practical choice. 

Significance Tests  Zk is a measure for the disequilibrium of a 
given tree, corresponding to a certain location in the chromosome, 
with given k deviant subtrees. Given a tree, TreeDT finds for each 
k the set S of subtrees that maximizes Zk. (Zk can be efficiently 
maximized simultaneously for all k using a recursive algorithm, as 
shown in the Algorithms section.) However, in order to find the 
best value of k for the given tree, simple maximization is not 
possible. Since the statistics for different degrees of freedom k are 
not comparable, TreeDT estimates the p value for each maximized 
Zk (under the null hypothesis of random distribution of disease 
status). Because the distribution of the maximized Zk is very 
complex and dependent on the tree structure, p values are 
estimated by a permutation test. 

In order to get a single p value for the disequilibrium at a given 
location, we need to combine the information from the trees to the 
left and to the right of the location. As a combined measure we 
use the product of the lowest p value over all k from each side. 
Again, since the measures are not necessarily directly comparable, 
a new p value for the combination is estimated. The results are 
now comparable between different locations. 

The output of TreeDT is essentially the p value ranked list of 
locations. A point prediction for the gene location is obtained by 
taking the best location; a (potentially fragmented) region of 
length l is obtained by taking best locations until a length of l is 
covered.  

Since multiple locations are tested for a p value, and also since the 
p values at nearby locations are not independent, a direct link 
between the p value and the probability that the gene is indeed 
close to the location can not be established. The p values are used 
simply as a method of ranking the locations. 

However, a single corrected p value for the best finding can be 
obtained with a third test using the lowest local p value as the test 
statistic. This p value can also be used to answer the question 
whether there is a gene in the investigated area in the first place or 
not. All these three nested p value tests (for each tree and k, for 
each location, for the best location) can be carried out efficiently 
at the cost of a single test [8]. 

4. Algorithms 
Constructing Haplotype Prefix-Trees  The haplotype prefix-
trees to the left and right from each analyzed location can be 
efficiently identified using a string-sorting algorithm. The 
algorithm produces as intermediate results for each marker the 
sorted list of the partial haplotypes to the right from the marker. 
All the right-side trees can be easily derived from these 
intermediate lists, because the haplotypes belonging to a single 
node form a continuous block in the sorted list. The left-side trees 
can be identified similarly by sorting the inverted haplotypes. The 
computational cost of constructing the trees is linear both in the 
number of markers and the number of haplotypes and it is 
negligible compared to the cost of the permutation test procedure. 

An Algorithm for Maximizing the Tree Disequilibrium 
Statistic  It is essential that the time-complexity of the algorithm 
for maximizing the Z values is as low as possible, because it must 
be executed for each tree location and permutation in turn. The 
key observation is that if subtree set S maximizes Z|S| in a tree T, 
then the restriction S´ of S to any subtree T´ of T maximizes Z|S´| 
for T´. Also, if S1 ∩ S2 = ∅ then Z(S1∪S2) = Z(S1) + Z(S2). These 
observations lead us to the following recursive algorithm that 
propagates the locally maximized Z values upwards in the tree. 

Input: A haplotype prefix tree T 
Output: Maximum values of Zk in the tree T for each k 
Call Maximize(T) 

Maximize(T): 
If T is not a leaf: 
1. For each immediate subtree Ti of T: Recursively call 

Maximize(Ti). 
2. For each k: calculate the maximum value ZMAX, k(T) for Zk 

over all S that can be obtained by combining subtree sets 
from each subtree Ti of T. 

3. Calculate Z1 for T. If  Z1>ZMAX, 1(T) then set ZMAX, 1(T) := Z1. 
If T is a leaf, then set ZMAX, 1(T) := 0. 

Step 2 can be further refined: 

 2 3 5 1 5 1 1 2 5 2   Control 
 1 5 1 4 3 1 3 4 3 2   Control 
 2 5 5 2 4 1 3 5 6 1   Control 
 4 6 5 3 1 3 4 1 1 1   Affected 
 2 5 5 3 1 3 4 1 1 2   Affected 
 3 3 1 3 1 3 4 3 2 1   Affected 

 

Figure 3. String-sorted set of haplotypes to the right from the 
location pointed by the arrow. 

     -----          time 
                                  mutation 
 
      1---- 
    34--- 
          13---           
                         3411- 
 
11252  13432  13561  34111  34112  34321 
 
Figure 4. The prefix tree, and also a possible coalescence tree, 

for the haplotypes of Figure 3. 



2.1 Set Yk := 0 and ZMAX, k(T) := 0 for all k, 1 ≤ k ≤ n, where n is 
the number of leaves in T. 

2.2 For each subtree T´ of T : 
2.2.1 For each pair (i,j), 1 ≤ i ≤ p and 1 ≤ j ≤ q, where p is the 

number of leaves in T’ and q is the total number of leaves in 
all the subtrees processed prior to T´: 

2.2.2 If ZMAX, i(T´) + Yj > ZMAX, i+j(T), then set ZMAX, i+j(T) := 
ZMAX, i(T´) + Yj. 

2.2.3 For each k, 1 ≤ k ≤ p: If ZMAX, k(T´) > ZMAX, k(T), then set 
ZMAX, k(T) := ZMAX, k(T’). 

2.2.4 For each k, 1 ≤ k ≤ p+q: If ZMAX, k(T) > Yk(T), then set 
Yk(T) : = ZMAX, k(T). 

The time complexity of the algorithm is O(n2), where n is the 
number of leaves in the tree i.e. the number of haplotypes in the 
data set. By setting an upper limit k for the size of the subtree sets, 
the average time complexity can be reduced to O(n) with a 
constant coefficient proportional to k2, k being typically small, 
≤ 10. In principle there is no need to set an upper limit – the 
number of leafs, i.e., the number of chromosomes is the maximum 
number of subtrees – but whenever LD-mapping is applicable, the 
majority of the mutation carriers is concentrated in only few such 
subtrees in which the shared region is long enough to identify a 
deviant  substring. In the experiments for this paper we use an 
upper limit of 6 subtrees.  

Multiple Nested Permutation Tests  The straightforward 
algorithm for a three-level nested permutation test using nested 
loops would have time complexity proportional to n3, where n is 
the number of permutations at each level. The test would be 
intractable already with rather low permutation counts. However, 
the time complexity can be drastically reduced using the same set 
of permutations at each level of the test and thus only maximizing 
the Zk-values n instead of n3 times for each location [8]. 

5. Related Work 
Most current gene mapping methods based on linkage 
disequilibrium look just at individual markers or neighboring 
markers, measure their association to the disease status, and 
predict the gene locus to be co-located with the strongest 
association. However, since different mutation carriers share 
different segments, there is no single marker or pattern that is 
representative of the shared segments.  

In the recent years, several statistical methods have been proposed 
to detect LD [1][3][4][6][10]. The emphasis has been on fairly 
involved statistical models of LD around a DS gene. The methods 
tend to be computationally heavy and therefore better suited for 
fine mapping than genome screening. 

Haplotype Pattern Mining or HPM [11] is based on analyzing the 
LD of sets of haplotype patterns, essentially strings with wildcard 
characters. The method first finds all haplotype patterns that are 
strongly associated with the disease status, using ideas similar to 
the discovery of association rules. In the second step, each marker 
is ranked by the number of patterns that contain it. Either this 
score is used as a basis for the prediction or, preferably, a 
permutation test is used to obtain marker-wise p values. HPM has 
been extended for detecting multiple genes simultaneously [12] 
and to handle quantitative phenotypes and covariates [7].  

Nakaya et al investigate the effect of multiple separate markers, 
each one thought to correspond to one gene, on quantitative 
phenotypes [5]. They do not handle haplotype patterns.  

An alternative approach for LD-based mapping is linkage 
analysis. The idea is to analyze family trees, and to find out which 
markers tend to be inherited to offspring in conjunction with the 
disease. Transmission/disequilibrium tests (TDT) [9] are an 
established way of testing association and linkage in a sample 
where linkage disequilibrium exists between the mutation locus 
and nearby marker loci. TDT detects deviations between observed 
and expected counts for each allele, or, in its multipoint variant, 
haplotype of several alleles, transmitted from heterozygous 
parents to affected offspring. We performed the TDT analysis 
using GENEHUNTER2 software package [2]. 

6. Experiments 
We compare TreeDT empirically to TDT, to multipoint TDT 
(m-TDT) using haplotypes of up to four alleles, and to HPM, our 
recent proposal based on pattern discovery. We evaluate the 
methods on difficult data collections carefully simulated to 
resemble a realistic population isolate. 

Simulation of Data  We designed several different test settings, 
with variation in the fraction (A) of mutation carriers in the 
disease-associated chromosomes, in the number of founders who 
introduced the mutation to the population, and in the amount of 
missing information. For statistical analyses, we created 100 
independent artificial data sets in each test setting. Great care was 
taken to generate realistic data by a simulation procedure that 
included four steps: pedigree generation, simulation of 
inheritance, diagnosing, and sampling [8]. Here we only give an 
outline of the nature of the resulting data sets. 

For a baseline test setting we selected a challenging disease model 
where only a small proportion (A=10%) of the disease-associated 
chromosomes carries the disease-predisposing mutation, a 
complication that often is encountered in the analysis of common 
diseases. In the baseline setting there is one founder, and on 
average 3.7% of alleles are missing, making the mapping task 
more difficult but also more realistic. 

The location of the mutation was selected randomly and 
independently for each of the 100 data sets produced in every 
setting. Each data set was in turn collected from 100 affected 
individuals. The length of the region to be analyzed was 100 cM1, 
and allelic data were created using a map of 101 equidistantly 
spaced markers, each having 5 alleles. Both chromosomes of each 
affected individual in each sample were labeled disease-associated 
whereas the control chromosomes were constructed from the non-
transmitted alleles in the parental chromosomes. Each data set 
thus consisted of 200 disease-associated and 200 control 
chromosomes 

Analysis of TreeDT  First we assess the prediction accuracy of 
TreeDT with different values of A, the proportion of disease-
associated chromosomes that actually carry the mutation (Figure 
5A). The results are reported as curves that show the percentage 
of 100 data sets where the gene is within the predicted region, as a 
function of the length of the predicted region. Or, in other words, 
the x coordinate tells the cost a geneticist is willing to pay, in 
terms of the length of the region to be further analyzed, and the y 
coordinate gives the probability that the gene is within the region. 
                                                                 
1 Morgan is a unit of genetic length. 1 cM is the distance at which 

recombination occurs 1 out of 100 times, on average about 106 
base pairs. Human chromosomes are about 50–300 cM. 



For A=20% or 15% the accuracy is very good, and with lower 
values of A the accuracy decreases until with A=5% only in 20-
30% of data sets can the gene be localized within a reasonable 
accuracy of 10-20 cM. We remind the reader that the test settings 
have been designed to be challenging, and to test the limits of the 
approach. 

Next we evaluate the effect of the only parameter of TreeDT, the 
number of deviant subtrees that are searched for in each tree. An 
upper limit of 6 subtrees, used in the previous test, is evaluated 
against fixed amounts of 1, 2, or 3 subtrees, with a varying 
number of founders that introduced the mutation (Figure 5B). As 
we increase the number of founders, evidence about the gene 
location becomes more fragmented, and accordingly the 
performance degrades. While the differences between different 
numbers of subtrees are not large, it is interesting to note that for 
each number of founders, the same number of subtrees gives 
marginally the best result. The upper limit of 6 subtrees gives 
consistently competitive results, so we continue using it in the 
following experiments.  

Gene mapping studies like the ones imitated in the above tests 
assume, based on some other analyses, that a disease susceptibility 
gene is indeed present in the analyzed area. TreeDT has the 
important advantage over plain gene localization methods that it 
can also be used to predict whether the analyzed region contains a 
disease susceptibility gene at all or not. The overall p value 
TreeDT produces indicates the corrected significance of the best 
single finding, and by setting an upper limit for its value TreeDT 
can be used to classify data sets to ones that do or do not contain a 
gene. For data sets with no gene, TreeDT correctly produces 
overall p values that are uniformly distributed in [0,1]. So, smaller 
thresholds for p result in less false positives, but also in less true 
positives. Figure 5C shows the experimental relationship between 
power (ratio true positives/all positives) and overall p (ratio false 
positives/all negatives). For higher values of A the classification 
accuracy is extremely good. However, for A=5% the classification 
accuracy is no better than random guessing, although the 
localization accuracy for an existing gene is still adequate in 20-
30% of the cases (Figure 5A). 

Comparison to other methods  TreeDT, HPM, and m-TDT have 
practically identical performance in localizing the DS gene in the 

baseline setting (Figure 6A). TDT is clearly inferior compared to 
the other methods. Tests with other values of A give similar 
results. 

In a test setting with three founders who introduced the mutation 
to the population, differences between the three best methods start 
to appear (Figure 6B). TreeDT has an edge over HPM, which in 
turn has an edge over m-TDT. TDT barely beats random guessing. 

Finally, we compare the methods with a large amount of missing 
data (Figure 6C). Expectedly, HPM is most robust with respect to 
missing data since it allows gaps in its haplotype patterns. 
Surprisingly, TreeDT is not much weaker than HPM, although no 
actions have been taken in it to account for missing or erroneous 
data. Performance of m-TDT degrades much more clearly. 

Method to method comparisons (not shown) indicate that the 
prediction errors are mostly caused by random effects in 
population history – since different methods tend to make 
mistakes in the same data sets – rather than by systematic 
differences between the methods. However, those cases where one 
method succeeds and another fails will give useful input for 
further improvements of the methods. 

The execution time of TreeDT for a single data set is about ten 
minutes using 1,000 permutations on a 450 MHz Pentium II. The 
respective time for HPM with permutations is over 20 minutes. 

7. Discussion and Future Work 
We have introduced TreeDT, a novel method for gene mapping. It 
is based on detecting linkage disequilibrium in the haplotype 
prefix trees to the right and left of the disease susceptibility gene 
location. We showed how tree disequilibrium can be efficiently 
evaluated between every pair of consecutive markers, and be 
subsequently tested for statistical significance using permutation 
tests. Empirical evaluation on a realistic, simulated data shows 
that the method is competitive with other recent data mining 
based methods, and clearly outperforms more traditional methods. 

Our experiments show that TreeDT is effective in extreme 
conditions typical for current mapping problems: with lots of 
noise (only 10-20% of affected chromosomes carry the mutation, 
lots of missing data) and with small sample sizes (200 affected 
and 200 control chromosomes). However, the highest potential of 
the method lies in the data intensive tasks of future – such as 

 
Figure 5. Analysis of the performance of TreeDT.  A: Gene localization power with different values of A, the proportion of disease-
associated chromosomes that actually carry the mutation.  B: Gene localization power with different numbers of subtrees (method 
parameter, given in the legend) and different numbers of founders (population parameter; 1 for the highest set of curves, 2 for the 

curves in the middle, and 3 for the lowest set of curves).  C: Classification accuracy for the existence of a disease susceptibility gene. 



genome scanning with larger samples and larger number of 
markers – due to its low computational complexity. 

In comparison to state of the art methods, TreeDT is most 
competitive. In terms of gene localization accuracy, it gave best 
results in the case of multiple founders and demonstrated good 
robustness with respect to missing data. Unlike the compared 
methods, TreeDT can be used to predict whether a gene is present 
at all or not. Finally, in comparison to its closest competitor, 
HPM, TreeDT has much smaller computational cost. An 
additional advantage of TreeDT is that it has only one input 
parameter, the (maximum) number of deviant subtrees, whereas 
for HPM one has to set several more or less arbitrary thresholds. 

Our future work will address several issues. One is more complex 
haplotype data: robustness towards missing information, errors, 
and marker mutations is important with noisy, real-life data sets. 

A whole set of issues concerns improving tests and models for the 
tree disequilibrium. Now we combine the left and right trees at a 
locus without considering how the haplotype strings actually 
extend over the locus; obviously we miss some information. 
Another way of improving the model performance is to average 
the disequilibrium test over all different tree structures. The test 
statistic itself will be improved to better account for the genetic 
processes that produces the data. 
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Figure 6. Comparison of the gene localization performance of TreeDT, HPM, multipoint TDT (m-TDT), and TDT.  A: The baseline 

test setting.  B: The baseline setting with three founders.  C: The baseline setting with 15% missing data. 


