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Abstract
We discuss the problem of discovering interesting nodes in
networks. We adapt a generic model to choosing relevant
and non-redundant pieces of information in networks and
probabilistic relations. In the model we assume that one
or more query nodes have been given, and the problem is
to identify other nodes that are relevant with respect to
the query nodes but non-redundant with respect to each
other. Also, negative query nodes can be specified. This is in
contrast with mainstream graph mining, where one typically
looks for frequent patterns, not for interesting individuals.

We consider two instances of the model: one where node
proximity (and relevance) is measured by the shortest path,
and one where the graph is probabilistic or uncertain and
proximity reflects the probability that the nodes are con-
nected. The generic model also has simple parameterization
to allow for different behaviors with respect to query nodes.

We compare different similarity measures and empiri-
cally evaluate two algorithms on different applications: so-
cial networks and biomedical networks. The results indicate
that the model and methods are useful in finding a relevant
and non-redundant set of nodes.

Keywords: Relevance, Non-redundancy, Graphs,

Knowledge Retrieval

1 Introduction

Information is often modeled as a network (or graph)
of objects (or concepts): think of social networks,
biological networks, traffic networks, or mind maps,
for instance. We address the problem of discovering
interesting nodes in networks. This is in contrast with
mainstream graph mining and network analysis, where
one typically looks for frequent patterns or community
structures.

In the settings that we consider, one or more query
nodes have been given, and the problem is to identify
other nodes that are relevant with respect to the query
nodes but non-redundant with respect to each other.
Also, negative query nodes can be specified. Consider
the following examples.
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Figure 1: An example network with two positive query
nodes Barcelona and Helsinki (in bold) and related
concepts.

In bioinformatics a common problem is that high-
throughput techniques associate several genes with a
disease or trait. A lot of non-trivial biological knowledge
can be represented as a network in which nodes repre-
sent biological entities (e.g., genes, proteins, or path-
ways) and edges represent relations between them (e.g.,
a gene codes a protein, or a protein is active in a path-
way). Now, finding biological processes or pathways
(nodes in the network) that are relevant both to the
disease and the given genes (the query nodes) helps to
understand how they are related and may help identify
possible shared biological mechanisms.

Negative query nodes specify regions to be avoided,
and are useful in preventing unwanted results in the
output. In the biological example, the user might
specify well-known positive results as well as known
negative results as negative query nodes, and thus guide
the mining process to more interesting results.

On the other hand, if the nodes returned as results
are closely related to each other, the result is probably
not as interesting as it could be. A more varied result of
the same size is probably more useful, as it can represent
several different hypothesis about the possible biological
relationship. This is addressed by the requirement that
the resulting nodes are mutually non-redundant.

Further on, if the relevant and non-redundant nodes
are ranked, a scientist could start to study them from
the top, and decide for herself when the relevance
becomes too low or the cost of further studies too high.

In semantic or word association networks, nodes



represent concepts and edges their semantic, associative,
or co-occurrence relations. Consider, as a toy example,
the network in Figure 1. A user who wants to know how
Barcelona and Helsinki are related might already know
that Barcelona is a city in Spain, that Helsinki is the
capital of Finland, and that both Spain and Finland
are in Europe and also are members of the European
Union (EU). Other, perhaps less obvious relations, can
be more interesting. For example, a user might have
not known that architects Antoni Gaud́ı (who lived in
Barcelona) and Alvar Aalto (who lived in Helsinki) both
have exhibited at a world’s fair (also known as Expo).
Another user again might not know that soccer player
Jari Litmanen has played for FC Barcelona as well as
for HJK Helsinki.

Given Barcelona and Helsinki as query nodes, the
goal is to identify a non-redundant set of nodes relevant
to both cities. In the small example network of Figure 1,
EU is highly relevant to both and therefore the first
choice to be included in the result. Europe is highly
relevant, too, but being closely related to EU it would
be a redundant choice. Non-redundant but still relevant
concepts include world’s fair and Jari Litmanen.

Note that relevance with respect to query nodes is
highest for nodes between the query nodes. A relevant
node typically is a central node for the (indirect)
relation between the query nodes. A non-redundant set
of relevant nodes (such as EU, world’s fair, and Jari
Litmanen) then highlights distinct relations or contexts
between the query nodes.

Relevance and redundancy have been addressed in
several contexts before, in particular in information re-
trieval and web search. A recent paper proposes a gen-
eral approach to find relevant and non-redundant ob-
jects based on object similarity or distance alone [16].
In the current paper, we extend that proposal in two
significant ways: (1) to networks, for finding interest-
ing and non-redundant nodes, and (2) to probabilistic
relations between objects, and in combination with ex-
tension 1 to probabilistic or uncertain networks.

It is interesting to note how the components of
this approach match the typical definition of data min-
ing as “the nontrivial extraction of implicit, previ-
ously unknown, and potentially useful information from
data” [10]. Our relevance measures utilize paths in net-
works, i.e., implicit relations between query nodes and
the results nodes. So, while the results are explicit and
simple — just a set of nodes — they represent implicit
information. Negative query nodes are a tool to help
the user find previously unknown information. That
is, if the user specifies information about the query
nodes that she already knows as negative query nodes,
then our approach finds previously unknown informa-

tion. While usefulness of results is difficult to mea-
sure outside the context of any particular application,
it seems obvious that the simplicity of the results makes
them easy to understand and that non-redundancy in-
creases the likelihood of their usefulness as a whole.

This paper is structured as follows. Section 2 re-
views the approach of [16] and briefly reviews other re-
lated work. We extend the approach to find relevant
and non-redundant nodes in networks in Section 3. In
the same section, we also propose alternative measures
for relevance and non-redundancy with a probabilistic
interpretation, and apply these to the network setting.
In Section 4 we carry out experiments on article co-
authorships networks and on biological networks. Sec-
tion 5 concludes the paper.

2 Background

2.1 A model for relevance and non-redundancy.
A relatively simple yet powerful model for choosing
relevant and non-redundant pieces of information has
been proposed recently [16]. We here briefly review
the model and algorithms of [16], to make this paper
self-contained. The following sections then contain the
original contributions of this paper.

The relevance model of [16] addresses settings where
relevance of objects is measured with respect to a
set of (positive) query objects and a set of negative
query objects, and the resulting objects should also be
mutually non-redundant.

The model assumes a similarity function
s : V × V → R+ or distance function d : V × V → R+

on a set of objects V . It assumes that either one is
given and identifies the other one simply with the
inverse s(u, v) = 1/d(u, v) for all u, v ∈ V , with the
exception that s(u, u) =∞.

Relevance. The relevance of an object u ∈ V
with respect to a positive query object q ∈ V is defined
directly as their proximity:

(2.1) relP (u, q) = s(u, q) = 1/d(u, q).

Given a set QP ⊂ V of (positive) query objects, an
object is considered to be more relevant if it is relevant
to all query objects. The relevance of object u with
respect to a set QP of query objects is then defined as
the inverse of the p-norm:

(2.2) relP (u,QP ) = (
∑
q∈QP

d(u, q)α)−
1
α

where α ≥ 1. Equation 2.1 is a special case of this
definition when QP = {q}. The relevance is monotone
decreasing in the distance to each query object (with
the exception of α = ∞ when it is a function of the
largest distance alone).



Irrelevance. Negative query objects allow speci-
fication of subjective irrelevance (uninterestingness) of
objects. The (negative) relevance of object u with re-
spect to a single negative query object q̄ is measured
with the given similarity or distance function, just like
relevance to a single positive query object:

(2.3) relN (u, q̄) = s(u, q̄) = 1/d(u, q̄).

A negative query object’s contribution is then
−relN (u, q̄).

A set QN ⊂ V of negative query objects are treated
more as a disjunction: the result is irrelevant if it is close
to any negative query object. Thus, negative relevance
of object u with respect to a set QN ⊂ V of negative
query objects is defined as

(2.4) relN (u,QN ) =
∑
q̄∈QN

d(u, q̄)−β =
∑
q̄∈QN

s(u, q̄)β ,

where β > 1. Their contribution to overall relevance
is then −relN (u,QN ). That is, the overall relevance of
a node is the relevance with respect to positive query
nodes (Equation 2.2) minus the irrelevance with respect
to negative query nodes (Equation 2.4). The irrelevance
function is zero if there are no negative query objects,
the effect of a negative query point infinitely far away
is zero, and the function is monotonically decreasing in
each distance.

Relevance vs. irrelevance. Given positive and
negative query objects (sets QP and QN , respectively),
the total relevance of object u is defined as

(2.5) REL(u,QP , QN ) = relp(u,QP )− relN (u,QN ).

It favors objects that are centered between the positive
query objects and that are not close to any negative one.
Given a single positive and single negative query point,
it simply measures which one is closer.

Non-redundancy. The most relevant objects, as
defined above, can be close neighbors. To retrieve mu-
tually non-redundant or complementary objects, redun-
dancy is defined in a similar way like negative relevance.

The redundancy of a set R ⊆ V of objects is defined
by

(2.6) red(R) =
∑
u,v∈R
u 6=v

d(u, v)−β =
∑
u,v∈R
u 6=v

s(u, v)β ,

where β ≥ 1. Redundancy will also contribute neg-
atively to the overall relevance of a set, that is, by
−red(R).

A relevant and non-redundant set of objects.
The overall goal is to find a diverse set of relevant
objects according to the user’s query. The overall

relevance and non-redundancy of a set of (retrieved)
objects R⊆V is defined as

(2.7)

REL(R,QP , QN ) =
∑
u∈R

relP (u,QP )

−
∑
u∈R

relN (u,QN )

− red(R).

We can now present the problem formally. In
addition to the positive and negative query objects,
assume the user also specifies the number k of objects
in the output, and possibly (for practical convenience) a
set V ′ ⊆ V of objects among which to select the output.

Problem definition. Given a set V of objects, a
distance function d(u, v) or a proximity function s(u, v)
for objects u, v ∈ V , a set QP ⊂ V of positive query
objects, a set QN ⊂ V of negative query objects, a
target set V ′ ⊆ V , and an integer k, the problem of
retrieving a relevant and non-redundant set of objects is
to identify a set R ⊆ V ′ of size |R| = k that maximizes
REL(R,QP , QN ).

The overall relevance REL(·) (Equation 2.7) is
submodular [16]. For a submodular function, a greedy
algorithm is guaranteed to find a set which achieves at
least 1/k of the optimal score [19]. We next review two
algorithms given in [16], a greedy and an iterative one.

Greedy algorithm. The greedy algorithm pro-
duces a ranked list of objects in an incremental,
greedy fashion with respect to the overall relevance
REL(u,QP , QN ). In each iteration, it finds the cur-
rently most relevant object and outputs it.

Greedy algorithm
1. Repeat until a sufficient number of objects

has been retrieved :
1.1 Find the most relevant object r

w.r.t . QP and QN .
1.2 Output r and add it to QN .

The greedy algorithm is made simple by the obser-
vation that – thanks to the uniformity of negative query
nodes and non-redundancy – non-redundancy can be
achieved by adding nodes to the set of negative query
nodes as they are output [16].

Iterative algorithm. The iterative algorithm be-
low produces a non-redundant set of k relevant objects,
where k is given as a parameter. The algorithm takes
k initial objects as input (or chooses them by random),
and then iteratively improves the solution. In each it-
eration, the algorithm takes one of the k objects and
replaces it by the optimal one, given the k−1 other cur-
rent objects. When no improvements can be achieved,
the algorithm stops.

Iterative algorithm



1. Get an initial solution R of k objects
(e.g. random)

2. Repeat while R changes:
2.1 Find the optimal swap of any object r in R

to any object not in R.
2.2 If the swap improves the result, implement it.

Two variants of the iterative algorithm were pro-
posed: (1) Run the greedy algorithm first (for k itera-
tions at least) and then use the top k objects from it as
the initial solution to the iterative algorithm. (2) Give
k random objects as the initial solution. Optionally
run the iterative algorithm several times with differ-
ent random seeds and choose the result that maximizes
REL(R,QP , QN ).

2.2 Other related work. Identifying a set of rele-
vant objects (typically documents) is a classical problem
in information retrieval (IR). In typical settings, the se-
lection is primarily based on the information contents
of objects. Our problem differs from the main body of
IR literature in the following aspects. (1) In our work
the objects (nodes) are not assumed to have attributes
or other content. (2) Relevance is based solely on node
proximity in a network. (3) Queries are specified as
nodes themselves, not by keywords.

Negative query terms and redundancy are well-
known in IR (see, e.g., [11, 15, 30]). Incremental
retrieval methods are widely used (see, e.g., [3, 5, 24]).
The problem of finding non-redundant or representative
objects has been addressed in numerous other contexts,
too (see, e.g., [17, 21, 31]). However, all these method
address non-redundancy only indirectly, and relevance
to query terms not at all. See [16] for a review of more
related work in general.

We have special interests on finding relevant nodes
in networks. Relevance and proximity can be modeled
in numerous ways, e.g., using the length of the shortest
path, network flow, effective conductance [14], and
random walk models (see, e.g., [9, 20, 26]). A variant of
random walk also considers positive and negative query
nodes [29]. In this approach the original graph structure
is refined to take negative query nodes into account,
whereas in our approach we do not change the graph
structure. There also is a variant that diversifies the
ranking by reinforcing the probability to stay at a node
by the number of visits to the node [18]. Again, non-
redundancy is addressed only indirectly.

Recently, an interesting variant of random walk
with restart was proposed to directly address non-
redundancy [28]. Relevance is measured by the person-
alized PageRank, and non-redundancy (called diversity)
by a personalized adjacency matrix, which is biased to-

wards the query vector and weighted by the personalized
PageRank vector. A greedy, iterative algorithm finds
such a ranking in O(|E|+ |V |2) time, or O(|E|+ |V |k)
if only the top k nodes are ranked. These relevance and
non-redundancy measures could be alternatively used
instead of the ones we use here. However, negative query
nodes and irrelevance are not considered.

Probabilistic relevance and proximity in networks
has been considered, for example, to find a relevant
subnetwork [12, 8]. In semantic networks, a related
approach is spreading activation between nodes [2, 1].
As such, all these methods address non-redundancy
only indirectly. They could potentially be used as
proximity (relevance) functions in our model, but their
computational complexity would likely be a problem.

The model proposed in [16] and its adaption to
networks proposed here differ from the previous work
by providing relatively simple but very flexible and
generic measures for finding relevant but non-redundant
nodes. Our model only relies on a distance or proximity
function between nodes, and does not assume any
other contents or properties for the individual nodes.
Potential targets thus range from mining or retrieving
atomic concepts to complex structures which can be
represented as nodes and their relationships as edges
in a network.

3 Relevant and non-redundant nodes in
networks

We are interested in data represented as a network, and
in finding relevant and non-redundant nodes. We next
adapt the model of [16] to networks. In order to identify
relevant and non-redundant nodes, we first formalize
the concepts of relevance with respect to given query
nodes, irrelevance with respect to given (negative) query
nodes, and mutual non-redundancy between nodes. We
then show how they can also be applied to probabilistic
relations in networks.

3.1 Standard networks. Let us start by discussing
some desirable properties of relevance and non-redun-
dancy in networks, using the network of Figure 1 as an
example.

Obviously, proximity to a query node indicates
relevance with respect to it. In the case of multiple
query nodes, the most relevant results are somewhere
between the query nodes. For instance, if Barcelona
and Helsinki are the query nodes, then EU, Europe, and
World’s fair are relevant results since they are relatively
well connected to both query terms.

On the other hand, if there are several negative
query nodes, each one’s neighborhood is to be avoided.
Given Barcelona and Helsinki as negative query nodes,



Catalonia and Finland are quite irrelevant, but EU is
not.

These desiderata indicate that some distance mea-
sure, such as the shortest path length between nodes, is
a suitable distance function. A bit more formally, as-
sume we have an undirected, weighted network where
edge weights are positive and where w(u, v) can be in-
terpreted as a distance between nodes u and v. For
example, edge weights can be boolean (w(u, v) = 1 if
an edge between u and v exists, and w(u, v) = 0 else) or
they can represent some domain specific distance. The
distance between two nodes can be defined as the length
len(sp(u, v)) of the shortest path sp(u, v) between them:

(3.8) d(u, v) =


0 if u = v
len(sp(u, v)) if u 6= v and they

are connected
∞ else.

Clearly, function d(·) is a metric: it is symmetric, sat-
isfies triangle inequality and is positive definite. Using
it, we can directly apply the relevance, irrelevance, and
non-redundancy functions and algorithms of Section 2.1
and [16] to retrieve relevant and non-redundant nodes.

In addition, one can also consider more complex
proximity measures, such as maximum flow or random
walk based models, that are not limited to just the
best path. Random walk with restart (RWR) provides
a relevance score between two nodes in a weighted
graph [27]. The standard random walk starts from
a node u and then iteratively moves from a node
to a neighboring one. The probability of choosing
any particular edge to follow (transition probability)
is proportional to the edge weight [22]. In a random
walk with restart, the random walker will at each step
return to the original node u with some probability. The
relevance score of nodes u, v can then be defined as the
steady-state probability that the random walker is at
node v.

Algorithms. Fast solutions exist for computing
RWR [27]. However, computing the distance function
of Equation 3.8 requires finding best paths between
nodes. All-pairs best paths can be computed in time
O(|V |(|E|+ |V |) log |V |) and this may be prohibitive on
large networks.

We propose the following simple optimization to
reduce run time. It does not change the worst case
complexity, but can give a practical advantage.

Recall that the overall relevance and non-
redundancy of a node u depends on its distance to all
positive query nodes, to all negative query nodes, and
to all other nodes in the output. However, a reasonably
good approximation can be obtained without comput-
ing all of these. As argued above, relevance with respect

to positive query nodes should usually depend on all of
them. However, irrelevancy with respect to negative
query nodes is usually mostly dependent on the nearest
negative query node.

We thus propose to use the maximum inverse dis-
tance or maximum similarity

(3.9) relN (u,QN ) = max
q̄∈QN

d(u, q̄)−β = max
q̄∈QN

s(u, q̄)β

instead of the sum of similarities (or inverse distances).
Clearly, relN (·) of Equation 3.9 is a lower bound of the
respective value of Equation 2.4, and it is the highest
lower bound we can obtain using just one negative query
node.

3.2 Probabilistic relations in networks. Con-
sider now a situation where the similarity of two ob-
jects is measured by a probability, such as the prob-
ability that the objects are related or linked. We are
particularly interested in probabilistic networks describ-
ing such uncertain relations. Such settings also arise in
probabilistic or uncertain databases [4, 7].

Assume that we are given probabilities p(u, v) for
all pairs of objects u and v. The probability is then a
natural similarity and relevance measure, but limited to
the range [0, 1].

A natural relevance measure with respect to a set
of positive query objects then is the probability that a
given objects u is related to all of the query objects:

(3.10) probP (u,QP ) =
∏
q∈QP

p(u, q).

It can be shown that this is essentially a special case
of the relevance function relP (u,QP ) of Equation 2.2.
Use function d(u, v) = − log(p(u, v)) to map probabili-
ties to distances, and set α = 1. Then

(3.11)
relP (u,QP ) =

∑
q∈QP

log(p(u, q))

= log(probP (u,QP )).

In uncertain networks where edges describe proba-
bilistic relations between nodes, we can define p(u, v) as
the probability of the best path between u and v. This
is a simple but relatively efficient lower bound approxi-
mation of the probability that u and v are connected, a
measure known as network reliability [6].

To be exact, Equation 3.10 then is approximate
also for another reason: it does not take into account
possible overlap in the best paths. The probabilities of
any shared edges will be counted several times. This
could be circumvented by considering the union of all
edges, but we anticipate this additional complexity is
not significant in practice.



Note that most probable paths can be reduced to
shortest paths: compute the sum

∑
d(·) of edge lengths

when they are defined by d(u, v) = − log(p(u, v)).
Finally, in uncertain networks, we can also use the

optimized negative relevance of Equation 3.9, which
translates to

(3.12) relN (u,QN ) = (− log max
q̄∈QN

p(u, q̄))−1

when β = 1.

4 Experiments

We will first illustrate the concepts and methods in
a social network setting, analysing relations between
computer scientists in a co-authorship network, looking
for researchers related to C. Faloutsos and J. Han. We
then study the performance of the methods on biological
network data.

4.1 Co-authorship relations. In the first set of
experiments we used a co-authorship network extracted
from DBLP1 (Digital Bibliography & Library Project)
of Oct 6th, 2010.

Test Setting. We extracted a network of 20 au-
thors and 45 co-authorships connecting Christos Falout-
sos and Jiawei Han and used four different pairwise sim-
ilarity measures:

• LEN-SP: the reciprocal of the length of the shortest
path (Equation 3.8) on boolean edge weights,

• LEN-SP-RWR: Random walk with restart with
transition probabilities proportional to LEN-SP,

• CUM: a similarity measure proportional to a cumu-
lative distribution function [23] in the range [0, 1],
where the proximity of any two authors, especially
when not co-authors, is defined using the best path
between them, taking the product of pairwise sim-
ilarities along the path as the final proximity, and

• CUM-RWR: Random walk with restart with tran-
sition probabilities proportional to CUM.

Results. The top eight relevant and non-
redundant authors obtained with the greedy algorithm
are shown in the left and middle column of Table 1.
While the left column shows the relevant and non-
redundant authors obtained with the relevance and non-
redundance measure of Section 2.1, the middle shows
those obtained with the probabilistic relevance and non-
redundance measure of Section 3.2.

1http://dblp.uni-trier.de/

When using LEN-SP or CUM as similarity, and
either relevance and non-redundancy measures, the
authors obtained are all prominent researchers that
are relatively closely related to Faloutsos and Han by
direct or indirect co-authorship relations. In both
cases, the first four of the chosen authors have never
published together according to DBLP, so they are likely
to represent different communities or areas relevant to
Faloutsos and Han. The spread of the results is also
illustrated by the fact that many of the first eight
authors come from different countries.

In contrast, if redundancy is ignored and the com-
putation is based only on relevance, a redundant set of
authors is obtained, regardless of which similarity mea-
sure is used (Table 1, right column). The eight most
relevant authors are highly connected to each other in
the co-authorships network, and come from either the
US or Canada, with a few exception. A redundant set of
authors is also obtained when LEN-SP-RWR or CUM-
RWR are used as similarity measure.

Comparison of algorithms. Let us next compare
the algorithmic variants when a fixed number k of nodes
should be given as result. We compare four different ap-
proaches: (1) finding relevant and non-redundant nodes
with the greedy algorithm and taking the top k nodes,
(2) finding them initially with the greedy algorithm
and improving the results with the iterative algorithm,
(3) picking k nodes randomly initially and improving
the results with the iterative algorithm, and (4) simply
picking k nodes randomly.

Figure 2 (a) shows the kth node’s effect on the over-
all relevance (in the original probability domain). The
overall relevance decreases with increasing k as it is
more difficult to find relevant and non-redundant nodes.
However, the individual factors fluctuate as the algo-
rithm chooses between different trade-offs of relevance
and non-redundancy. The irrelevance is constant at 1.0
as no negative query node was chosen.

Figure 2 (b) shows a comparison of the algorithmic
variants and random ranking. The three algorithmic
variants, using the greedy and iterative algorithms, are
practically indistinguishable while the random results
are systematically inferior. This indicates that the
result of the greedy algorithm is, in addition to being a
ranking of the nodes, also a good choice for any given k.
Another observation is that the iterative algorithm
performed equally well with random initialization as
it does with initial ranking obtained by the greedy
algorithm.

4.2 Biomedicine. We used data published by
Köhler et al. [13], who defined 110 disease-gene fami-
lies based on the OMIM database. The families contain



Table 1: Eight most relevant and non-redundant authors (left and middle columns) or just relevant authors (right
column) for QP = {C. Faloutsos, J. Han}.

Relevance and non-redundancy Probabilistic Relevance only
with α = 4, β = 2 relevance and non-redundancy with α = 4

L
E

N
-S

P

P.S. Yu IL, USA P.S. Yu IL, USA P.S. Yu IL, USA
R.T. Ng Canada R.T. Ng Canada R.T. Ng Canada
H.J. Zhang China B. Chin Ooi Singapore C. Liu WA, USA
B. Chin Ooi Singapore Y. Tao Hong Kong W. Fan NY, USA
Y. Tao Hong Kong X. He China T.K. Sellis Greece
C. Liu WA, USA W. Fan NY, USA L.V.S. Lakshmanan Canada
T.K. Sellis Greece J. Gao IL, USA J. Gao IL, USA
W. Fan NY, USA J. Yang OH, USA J. Yang OH, USA

L
E

N
-S

P
-R

W
R

P.S. Yu IL, USA P.S. Yu IL, USA P.S. Yu IL, USA
R.T. Ng Canada R.T. Ng Canada R.T. Ng Canada
H.V. Jagadish MI, USA H.V. Jagadish MI, USA H.V. Jagadish MI, USA
C. Liu WA, USA J. Pei Canada J. Pei Canada
J. Pei Canada C. Liu WA, USA C. Liu WA, USA
H. Tong NY, USA L.V.S. Lakshmanan Canada L.V.S. Lakshmanan Canada
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three to 41 genes each; each family is related to one
disease.

Test Setting. We randomly picked several test
queries as follows. For each query, three different gene
families were randomly chosen, and from each family a
gene was randomly picked. Two genes were then used
as positive query nodes (QP ) and one as a negative
one (QN ).

For each query, we used Biomine [25] to obtain a
biomedical network G connecting the positive query
nodes and to compute probabilistic proximities p(·).
The sizes of the networks range between 61 to 130
nodes. Experiments with larger networks produce
similar results.

Results. Let us first look at the results from a
single network of 82 nodes, with two positive and one
negative query node. All the other 80 nodes are to be
ranked by the greedy algorithm. Figure 3 (a) shows the
kth node’s effect on the overall relevance (in the original
probability domain, again). While non-redundancy
starts at 1 for k = 1 and is high at the beginning, it
eventually drops. The overall relevance decreases with
increasing k as it is more difficult to find relevant and
non-redundant nodes. However, the individual factors
fluctuate as the algorithms chooses between different
trade-offs of relevance and non-redundancy.

Figure 3 (b) illustrates the relevance and non-
redundancy of the the whole set Rk of top k nodes for
10 different networks and queries. The panels show that
the quality decreases in quite a similar manner for all
these different cases, but there are differences of orders
of magnitude.

5 Conclusion

This paper is a step towards a generic approach to prob-
lems where a non-redundant set of relevant nodes should
be found, given positive and negative query nodes and
a distance or proximity measure. We adapted defini-
tions of relevance, irrelevance and non-redundancy to
networks and probabilistic relations of nodes. We per-
formed experiments on a co-authorship network as well
as on biomedical networks. We performed experiments
with different similarity measures, based on which the
length of the shortest path and a similarity measure pro-
portional to a cumulative distribution seem to produce
a good set of nodes.

We experimentally analyzed two algorithms: one
that greedily ranks a given set of nodes, and another
one for finding an optimal set of nodes when the size of
the set is fixed. Based on the results, both algorithms
seem to produce a good set of nodes. Interestingly, the
greedy algorithm that produces a ranking worked well
for any top k nodes.

This work is preliminary in several aspects and at
least the following aspects should be addressed in future
work. (1) More efficient definitions or approximations of
node proximity are needed for better scalability to large
networks. (2) More expressive node similarities based,
e.g., network reliability could prove more powerful, but
are also computationally more demanding. (3) The
current methods and experiments are a proof of concept
and show great promise, but more experimentation is
needed to understand the practical behaviour of the
methods and parameters.
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Figure 2: (a) Overall relevance (solid), rele-
vance (dashed), irrelevance (short dashed), and non-
redundancy (dotted line) of the kth node by the greedy
algorithm. (b) Overall relevance of set Rk of top k
nodes obtained by the three variants of the algorithms
(the lines are indistinguishable) and random ranking for
k = 1, . . . , 6.
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Figure 3: (a): Overall relevance (solid), rele-
vance (dashed), irrelevance (short dashed), and non-
redundancy (dotted line) of the kth node by the greedy
algorithm. (b): Overall relevance of the top k nodes for
10 different networks by the greedy algorithm.
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