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Abstract

Haplotypes are important for association based gene mapping, but
there are no practical laboratory methods for obtaining them directly
from DNA samples. We propose simple Markov models for reconstruc-
tion of haplotypes for a given sample of multilocus genotypes. The mod-
els are aimed specifically for long marker maps, where linkage disequi-
librium between markers may vary and be relatively weak. Such maps
are ultimately used in chromosome or genome-wide association studies.

Haplotype reconstruction with standard Markov chains is based on
linkage disequilibrium (LD) between neighboring markers. Markov chains
of higher order can capture LD in a neighborhood of a given size. We
introduce a more flexible and robust model, MC-VL, which is based
on a Markov chain of variable order. Experimental validation of the
Markov chain methods on both a wide range of simulated data and real
data shows that they clearly outperform previous methods on genetically
long marker maps and are highly competitive with short maps, too. MC-
VL performs well across different data sets and settings while avoiding
the problem of manually choosing an appropriate order for the Markov
chain, and it has low computational complexity.

1 Introduction

Haplotypes capture information about regions descended from ancestral chro-
mosomes. They are essential for many genetic studies, especially for association
(or linkage disequilibrium, LD) based gene mapping: haplotypes can be much
more informative than single markers, and they give higher power for assign-
ing a phenotype to a genetic region in association studies '. Being able to use
haplotypes is particularly important for SNP (single nucleotide polymorphism)
markers, which are alone relatively uninformative.

Current practical laboratory techniques provide unphased genotype infor-
mation for diploids, i.e., an unordered pair of alleles for each marker. Re-
construction of haplotypes from genotype data is then a crucial step in the
analysis process. There are two approaches to the problem. One is based on
trios: haplotypes are inferred from the genotypes of a subject’s parents. This
involves significant additional genotyping costs and potential recruiting prob-
lems. Further, in the case of SNPs, on average up to one eighth of the alleles



can still remain ambiguous. The second approach is to apply computational or
statistical inference to find the most likely haplotype configuration consistent
with the observed genotype data. This population-based alternative is fast and
cheap and has been recently researched a lot: Clark’s parsimony method?3, the
expectation-maximization (EM) algorithm # and its Partition Ligation (PL)
variant ®, Phase %, Haplotyper 7, and the phylogenetic approach 9.

We propose and evaluate Markov chain models for population-based hap-
lotype reconstruction and compare them with previous methods. While the
existing methods typically assume that each haplotype is descended as a unit
from generation to generation, we consider models that better accommodate
recombinations. Our approach is motivated by gene mapping studies using ge-
netically long, even genome wide maps'°. In a typical study for gene mapping
by LD, a map of markers is selected from the region of interest, which may
span from millions to hundreds of millions of base pairs. For economical rea-
sons, only a sparse subset of all known markers (polymorphisms) in the region
is used. Chromosome and even genome-wide association studies are considered
to have potential for efficient mapping of common disease genes 1011,

Instead of estimating frequencies of full haplotypes, like previous models
for population-based haplotyping, the Markov chain (MC) models we propose
in Section 2 estimate and use frequencies of local haplotype fragments, i.e.,
shorter regions potentially conserved for several generations and thus more
likely to be reliably identifiable in a population sample. The method does not
assume haplotype blocks'? in the population; in a sense our model allows each
individual haplotype to have its own structure. Higher adaptivity to the data
at hand is obtained by using haplotype fragments of different lengths at differ-
ent regions, based on the strength of evidence for a fragment to be identical by
descent in several haplotypes. We propose a Markov chain model of variable
order, MC-VL, to obtain this adaptivity. Models related to the ones proposed
in this article have been applied to various other sequence modeling and pre-
diction problems'®'* but, to our knowledge, not to haplotyping. We provide
a hierarchical algorithm for constructing haplotypes (Section 3). Finally, we
give an experimental evaluation of the proposed methods under varying linkage
disequilibrium and compare the methods with previous techniques (Section 4).
For the evaluation we use a wide range of simulated data as well as Daly’s
data '2. We conclude in Section 5.

2 Models for Haplotype Reconstruction

Concepts and Notation We assume a set (map) M of ¢ markers 1,...,¢
and denote the set of alleles of marker i by A;. A haplotype H over M is then



a vector of alleles: H € [[,_, ,A;. A (multilocus) genotype G over M is a
vector of (unordered) allele pairs: G € [[,_; ,{{a1,a2} | a1,a2 € A;}. For
SNPs, |4;| = 2. Assuming alleles are labeled “1” and “2”, SNP haplotypes
are vectors in (1,2)¢ and SNP genotypes vectors in ({1,1},{1,2},{2,2})*. In
our terminology, a haplotype thus refers to the alleles in a chromosome over
the whole marker map (and not e.g. to a segment descended as such from a
founder). In a similar way, here the term genotype refers the data over the
whole marker map (and not e.g. to just one marker).

Let H(i, j) denote the sequence from the ith to the jth marker in haplotype
H. We call H(i,7) a (haplotype) fragment. We will denote H (i,) simply by
H (). Also, let G(i,j) denote the sequence of allele pairs from the ith to the jth
marker in genotype G. Again, G(i,1%) is denoted by G(¢). Given two haplotypes
H,, Hy and a genotype G such that G(i) = {H1(i), Hz(4)} for all i, we say
that Hy,Hy and G are consistent or that {Hy, Ha} is a (possible) haplotype
configuration for genotype G. Two haplotypes determine a unique consistent
genotype in the obvious way. A genotype, on the other hand, can have several
haplotype configurations. For a genotype G with k heterozygous markers (k =
[{i | |G(i)| = 2}|), there are 28~ different haplotype configurations. The set of
all possible haplotype configurations for a genotype G will be denoted by Cg,
with |Cg| = 28!, Finally, we say that a fragment H(i,j) and a genotype
G match if there exists a string H € [1=: . ;Ai such that {H(i,j), H} is
consistent with G(4, 7).

Breakdown of the Haplotype Reconstruction Problem In this paper
we address the haplotype reconstruction problem: given a set G of genotypes
the task is to output the most likely haplotype configuration for each genotype
G € G. We assume Hardy-Weinberg equilibrium and use the equation

PHOPUH) e rg Ve O
P({H\,H>} | G) Z{ (?{H,E}ecc; P(H)P(H) Ui, o) ¢ (1)

otherwise

to reduce the problem of estimating the probability of haplotype pairs to es-
timating the probability of single haplotypes. The genotypes are assumed to
come from the same population and thus to share haplotype fragments, based
on which the probability of different haplotype configurations can be estimated.

Estimation of Haplotype Fragment Probabilities We estimate the prob-
abilities of haplotype fragments by their frequencies computed from the geno-
type data G. Whenever a genotype fragment G(i,7) has more than one het-
erozygous marker, it has several possible haplotype configurations. To com-



pensate for this ambiguity, the matching genotypes are weighted according to
their heterozygosity:

PHG.I) ~ Fr(HGD) = g >0 27hee, (2)

G matches H(i,j)

where k¢(; j) is the number of heterozygous markers in G(7, j) and fr(-) de-
notes frequency of the parameter. A homozygous genotype has two identical
haplotypes both matching the fragment, and thus weight 2. This approach
is very simple and in a strong contrast with the previous work on the topic,
where the main emphasis is on haplotype frequency estimation.

Markov Chains Markov chains are simple models that capture statistical
dependence between neighboring alleles:

P(H)~ P(H(1)) [[ P(H@)|H(i-1)).
i=2,...,0

The motivation is that knowing a neighboring allele can tell a lot about the
next allele, due to linkage disequilibrium between alleles of nearby markers.
We estimate P(H) from frequencies of haplotype fragments of length one and

two:

P(H) ~ fr(H(1) ] f;ﬁﬂ(im’
1=2,...,0

The obvious shortcoming of this model is that although linkage is strongest
between neighbors, a neighborhood of several markers is more informative and
can show stronger LD.

Markov chains of order d (MC-d) are a more powerful alternative:

(3)

PH)~PH(1,d) [[ PHG)|H(G-di-1)). (MC-d)
i=d+1,....0

Here d can be used to tune the size of the neighborhood. With d = 1 we
obviously have the standard Markov chain as a special case. To estimate
P(H) we compute the set F; of all haplotype fragments of size d and d + 1
and use their frequencies as in formula (3).

Variable Order Markov Chains Markov chains of variable order aim at
adjusting the size of the neighborhood for each marker and haplotype indi-
vidually. Informally, the goal is to use haplotype fragments that maximize



the informativeness of LD. The exact model we propose is a Markov chain of
variable order determined by longest fragments (MC-VL). For this model, we
compute the set Fy; of the N most frequent haplotype fragments:

Fa={H(.j) | fr(H(i,j) > fr(H') for all H' & Fu}, [Ful = N.

The idea is that we always use the longest fragments in F,; from which we
estimate the probabilities:

P(H) =~ P(H(1)) H P(H(i) | H(si,i — 1)), (MC-VL)
i=2,...0

where s; = min{s|H (s, i) € F,1}. In an area where there are long frequent frag-
ments, the order of the Markov chain will be high. Since these fragments are
frequent they are more likely to be identical by descent and thus are evidence
for the haplotype to be reconstructed.

Handling Missing Data In real applications, marker data is often missing,
due to changes in the marker map during the study, or due to genotyping
problems. The MC methods can be extended to handle missing data with the
following two modifications (we assume that either both alleles of a marker are
known or both are missing).

First, the estimation of fragment frequencies needs to be adjusted so that
information in genotypes with missing data is included. This is done by dis-
tributing the probability mass of a genotype over all the fragments obtained by
imputing possible alleles at the missing markers, weighted by the frequencies
of the alleles. Recall the frequency estimate fr(H (i, 7)) in Equation 2, and let
G match H(i,7) if they match in all markers where G does have data. Then
fr'(H(i,7)), the frequency estimate when G can have missing data, is defined
as

friHG ) = frdG ) [T fr#E@m),
Gm) 52 et
where fr(H(m)) is the frequency of allele H(m).

Second, to reconstruct haplotypes for genotypes with missing data, proba-
bilities (frequencies) need to be estimated for fragments H (7, j) that potentially
have missing data (no alleles are imputed, though). The estimate is the sum of
the frequency of all fragments H' (7, j) in Fy) or F4 that match H (4, j) wherever
it has data.



3 Haplotype Reconstruction Algorithm

The number of haplotype configurations for a genotype grows exponentially
with the number of heterozygous markers, so exhaustive search is feasible only
for small marker maps. If the marker map is long, we use use a hierarchical
“partition ligation” (PL) search strategy, motivated by a similar strategy used
by Niu et al. 7. We use MC-VL as probability model in the description of our
haplotype reconstruction algorithm (Figure 1). It is obvious how to adapt the
algorithm for use with MC-d.

Given a set of genotypes G the algorithm HAPLOREC computes the frag-
ment frequencies and then uses the PL strategy to search a subspace of all
possible configurations for each genotype G individually. First, the PARTI-
TION procedure recursively splits G until the genotype fragments consist of
at most £, markers. ., is chosen such that the evaluation of all possible
configurations of a fragment of length /,,,, is computationally feasible. In our
experiments, we have used f,.x = 8. When £, = £, i.e., the total number of
markers, then the algorithm performs the exhaustive search strategy.

HAPLOREC(G)
Compute the set Fy1 of fragments and their frequencies using Equation (2);
for each G € G do

Output the most probable element of PARTITION(G);

PARTITION(G)

if |G| < fmax then
Compute the set Cg of all haplotype configurations for Gj;
Estimate their probabilities using Equations (1) and (MC-VL);
Output the B most probable elements of Cg;

else
H1 = PARTITION(G(1, |G|/2));
H2 = PARTITION(G(|G|/2 + 1,|G]));
H = LIGATE(H1, H2);
Estimate the probabilities of elements of H using Equations (1) and (MC-VL);
Output the B most probable elements of H;

end if

LIGATE(H1, H2) o
for each {H,H:} € H1 and {H2, H2} € H2 do
Output {H1H2,ﬁ1ﬁ2} and {H1ﬁ2,ﬁlH2};

Figure 1: Haplotype reconstruction algorithm using probability model MC-VL and hierar-
chical partition ligation.



Once G is partitioned into small fragments, the B most probable haplo-
type configurations from all possible configurations according to MC-VL are
obtained for each fragment. On all other levels of recursion, the LIGATION
procedure produces 282 haplotype configurations by joining configurations for
shorter fragments, obtained from the deeper recursion level and returns the
B most probable ones. In the end, we obtain the B most probable haplotype
configurations for the full genotype.

The method is greedy and not guaranteed to find the haplotype configu-
ration with the largest probability. It is possible, although not likely, that a
fragment of the most probable configuration is not among the B most likely
fragments, and thus the global optimum is not found. However, in our exper-
iments with B = 10 this was rarely the case.

Both MC-VL and MC-d have linear time complexity in |G|; are exponential
in £ax, quadratic in B, and subquadratic in ¢£; MC-d is exponential in d. The
space complexity of MC-VL is linear in N; MC-d is again exponential in d.

4 Experimental Results

Test setting We used simulated data sets in order to be able to perform
controlled experiments. The setting corresponds to an association study in a
population isolate. We simulated a population with effective founder popula-
tion of size 20 (20 founders each with independent random haplotypes with
uniformly distributed alleles). The population then expanded for 20 genera-
tions with random mating, leading to a final population of 100000 individuals.
We used a sample of 500 genotypes, drawn randomly and independently from
the last generation. We experimented separately with biallelic markers (SNPs)
and 6-allele markers (microsatellites).

In our experiments we used a marker map of 32 evenly spaced markers.
The major parameter varied in the experiments was the distance between ad-
jacent markers: it ranged between 0.01 and 1 ¢cM. The simulated chromosomal
regions had, respectively, genetic lengths between 0.31 and 31 cM. We ran 10
independent population simulations for each of the different marker spacings
and report results averaged over the 10 simulations.

In data sets and populations like the ones simulated, recombination is
practically the only factor affecting haplotype (fragment) sharing between in-
dividuals in the final population. In 20 generations, 0.062-6.2 recombinations
are expected per genotype for regions of length 0.31-31 c¢M, so reasonable mix-
ing and fragmentation of founder haplotypes can be expected with the longer
regions simulated. Marker mutations are unlikely in 20 generations and 32
markers, and were ignored in the simulation.



As a dense and real benchmark data we use the public Daly set 2 which
consists of 129 genotyped trios from a European derived population. The map
consists of 103 SNPs ranging over 500 kb located on chromosome 5g31 (Crohn’s
disease). We inferred the haplotypes of 129 children from pedigree data and
used the nontransmitted chromosomes as an extra 129 (pseudo) haplotype
pairs. Markers for which both alleles could not be inferred were marked as
missing. From the set of 258 genotypes, the ones with more than 20% missing
alleles were removed, leaving 147 genotypes in the final test set.

We measure the performance of the methods by the average number of
switches (“recombinations”) needed in the computer-generated haplotype con-
figuration to recover the original haplotype configuration '°. Switch distance
is a natural error measure for this problem: many applications using inferred
haplotypes will look at local haplotype segments and they are correct unless
one of the needed switches is within the segment.

For benchmarking, we used available implementations of Phase %, Snphap
(see D. Clayton’s website) and PL-EM ®. We used default parameters where
possible. For Phase, no step-wise mutation model was assumed, the number
of iterations and burn-in iterations were both set to 10000, and the thinning
interval was 100. For PL-EM, we set buffer size to 50, number of iterations
to 20, and parsize to 1, as in our case a lot of haplotype diversity was assumed
to be present.

We did not succeed in running our experiments with Haplotyper ” (version
1.0, linux). Haplotyper worked fine for smaller test data sets, but terminated
with an error in most of the data sets that were used in our experiments.

Evaluation of the models The performance of the methods is illustrated
in Figure 2. Results with SNP data sets are on the left, with microsatellites
on the right. The first row shows the performance of different Markov chain
models, as a function of the marker map density. An immediate observation is
that as markers are more sparsely spaced, the problem becomes more difficult
and the error increases, as expected.

A useful and positive result is that the problem is solvable with quite a
small error. Best models have switch distances between 0 and 3.5 (MC-10 and
MC-VL, SNP data) or 0 and 2 (MC-4 and MC-VL, microsatellites), practically
linear in the marker spacing. The results are excellent, less than 0.5 switches
with SNP data for marker spacings 0.01-0.15 cM.

Markov chain models MC-d of a fixed order give mixed results. With
d =1, i.e., the standard Markov chain, the results are poor. With a growing
d, results first improve but later deteriorate for sparse maps (see especially
MC-12 for SNPs and MC-5 for microsatellites). This is due to overfitting as d
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Figure 2: Experimental evaluation of proposed methods on simulated data.



is larger than the informative neighborhood of a marker. The suitable value
of d can be quite different not only for different marker densities but also for
different datasets: in our data, d = 10 is a good choice for SNPs, and d = 4
for microsatellites. Further, in a real data set with a less systematic marker
map, no single value of d would necessarily be suitable across the whole map.

The second row of Figure 2 tests the robustness of MC-VL to N, the
number of most frequent fragments used. The tested range is from 5000 to
100000, and MC-VL shows quite stable behavior, especially if contrasted to
the large variance in results obtained with MC-d models. In all other figures
we have used N = 30000 most frequent fragments.

A comparison to state-of-the-art methods is provided on the third row of
Figure 2: Phase, Snphap, and PL-EM are applied to the same data sets, and
results of MC-VL and MC-10 (SNPs) or MC-4 (microsatellites) are included
for comparison. (The available implementations of Snphap and PL-EM assume
SNP data and could not be run with microsatellites. The implementation of
PL-EM failed for 1 ¢cM marker spacing, resulting in a missing data point.)
The performance of MC models is solid throughout the different settings and
superior over previous models on marker densities larger than 0.05 cM.

A comparison on the Daly data set shows that the MC models are most
competitive also with dense, real data sets with missing data. MC-VL and
MC-9 outperform Snphap in terms of switch distance (0.90, 0.93, and 1.29,
respectively). Switch distance could not be measured for Phase, as it often gave
haplotype configurations not consistent with the observed genotype data. If the
accuracy is measured in terms of haplotypes that are not completely correct,
then Snphap, MC-VL, and MC-9 outperform Phase with a clear margin (0.41,
0.45, 0.48, and 0.97, respectively). (PL-EM did not complete in few days.)

The bottom row of Figure 2 illustrates the space requirements of the MC
models, in number of haplotype fragments stored, for the simulated data sets.
MC-VL has a constant space requirement, whereas the MC-d models have
roughly exponential space requirement in d.

The running times of MC-VL ranged from 70 to 140 seconds for both
SNPs and microsatellites, depending on N. The time requirement of MC-d is
proportional to its space requirement, i.e., exponential in d. With the values of
d reported in Figure 2, the running times varied between 40 and 120 seconds.
Larger values took too long for repeated experimental testing. In comparison,
Snphap takes around 2 to 20 seconds for the current data sets, PL-EM 3 to
100 seconds, and Phase between 5 hours (SNPs) and 30 hours (microsatellites).
All experiments were run on a PC with an AMD 1400 Mhz processor. The
MC models were implemented in Java, other implementations were provided
by their authors.



5 Conclusion

We proposed Markov chain models for the haplotype reconstruction problem,
motivated by association studies with wide marker maps. We experimentally
tested the performance on simulated and real data. Normal Markov chains
(of order d = 1) did not perform well. Higher order Markov chains did, but a
suitable order d needs to be found for each data set. Variable order Markov
chains (MC-VL) showed consistently good behaviour.

In experimental tests the MC models outperformed previous methods with
sparse maps and were most competitive with dense maps, too. With SNPs
the margin is clear and the switch distance of MC models is tens of percents
smaller; with microsatellites the switch distance is less than half of Phase’s.
The wide applicability of the MC models was demonstrated on real data.

Why do the MC models perform well on sparse data? Previous haplo-
typing methods that are based on estimating haplotype frequencies are not
well suited for situations where many haplotypes are unique. In the simulated
setting, almost half of the haplotypes (480/1000) are unique with marker den-
sity 0.2 ¢cM; with a density of 0.5 ¢cM there are already 828 unique haplotypes.
Estimating frequencies of haplotypes that occur only once is obviously difficult.

Among the MC models, MC-VL has some nice properties. It seems to
adjust for a suitable neighborhood, and the user does no need to worry about
setting the order d of a Markov chain; the model is not sensitive to the se-
lection of its model parameter N. The computational complexity is low and
predictable, compared to the exponential time and space of MC-d in d.

Our future work will include improved methods for estimating fragment
probabilities. A promising idea is to use an iterative approach similar to EM.
The performance of different components of the solutions could be evaluated:
it is not fully clear which fraction of errors is due to fragment frequency es-
timation, which is due to models, and which to the heuristic search strategy.
Probably each component has room for improvement. The effect of the haplo-
type reconstruction algorithm on the subsequent analysis, especially haplotype-
based gene mapping, remains yet to be evaluated systematically.

An implementation of the methods introduced in this article is available
at http://www.cs.helsinki.fi/group/genetics/haplotyping.html.
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