Exercises 4 (due Oct 7–Oct 11)

- 1. Study exact database rules as "frequent" patterns (Section 7.3.3 in the course material). Explain what the specialization relation \leq is and how it works. Explain the relation \subseteq . Use examples.
- 2. Explain Theorem 7.12 and its proof.
- 3. Consider the problem of finding common strings in given lines of text. For instance, string "a da" occurs on both lines

abracadabra da cabra ta daa

but string **abra** only on the first one. Formulate the knowledge discovery task. In particular, specify

- \mathcal{P} : class of patterns
- -q: selection criterion
- \leq : specialization relation
- 4. Give a simple simulated example of Algorithm 7.6 being applied to some data with your specifications in task 3 above.
- 5. Consider the class of frequent sets over $R = \{A, \dots, E\}$ and a set of patterns $S = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}, \{A, B\}, \{A, D\}, \{A, E\}, \{B, D\}, \{D, E\}, \{A, B, D\}, \{A, D, E\}\}$.
 - What is the positive border $\mathcal{B}d^+(\mathcal{S})$?
 - What is the negative border $\mathcal{B}d^{-}(\mathcal{S})$?
- 6. Consider the pattern class of frequent sets, and the connection between the border of a theory \mathcal{T} and hypergraph transversals. Assume $R = \{A, \ldots, E\}$ and $\mathcal{B}d^+(\mathcal{T}) = \{\mathcal{A}, \mathcal{C}\}, \{\mathcal{A}, \mathcal{D}, \mathcal{E}\}, \{\mathcal{B}, \mathcal{C}\}, \{\mathcal{B}, \mathcal{D}, \mathcal{E}\}.$

What is the corresponding hypergraph?

Obtain $\mathcal{B}d^{-}(\mathcal{T})$ by computing the minimal transversals of this graph.