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Abstract

Dimension reduction is a highly useful tool in algorithm design, with applications
in nearest neighbor searching, clustering, streaming, sketching, learning, approximation
algorithms, vision and others. It removes redundancy from data and can be plugged
into algorithms suffering from a ”curse of dimensionality”.

In my talk, I will describe a novel technique for reducing the dimension of points
in Euclidean space, improving a now classic algorithm by Johnson and Lindenstrauss
from the mid 80’s. Our technique is the first to offer an asymptotic improvement, and
has already been used in design of efficient algorithms for nearest neighbor searching
and high dimensional linear algebraic numerical computations.

I will present our algorithm, its proof, applications, and interesting open questions.
Joint work with Bernard Chazelle.

1 Introduction

Most of the talk will be based on a paper by the speaker with Bernard Chazelle [1]. Other
related work [2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13].
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