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This writeup includes very basic background material for the talk on the Fast Johnson Linden-
strauss Transform on May 28th, 2007 by the author at the Summer School on Algorithmic Data
Analysis in Helsinki, Finland. The talk is about the results in [2], but will be based on a new more
recent proof (together with Edo Liberty), using more modern tools, such as probability in Banach
spaces and error-correcting codes. These tools also give stronger results. A written version of the
new proof will be available for download as a technical report shortly. The information here touches
the surface of deep, classic theories, but should be useful for those who are interested in a quick
review. The talk will ”fuse” the seemingly disparate ideas here into an algorithm. Some exercises
are included.

1 Dimension Reduction

In many applications, we are given as input points in high dimension and wish to reduce the dimen-
sion while (approximately, with high probability) preserving certain properties. Such a procedure
can be used to save space or time, or to remove redundancy from data. The above definition is
extremely loose and can encompass buzz words such as ”Principal Component Analysis (PCA)”,
”sparse approximation” and even ”compression”. I will talk about dimension reduction from the
perspective of algorithmic metric embedding. This means that the property we preserve is the metric
on the points, and we also care about the computational resources required for the reduction.

There are two metrics in question: the domain (original) metric, which will always be the `2

(Euclidean) metric in Rd here and the range (reduced) metric, which will either be `1 (”Manhattan
distance”) or `2. We remind that the Euclidean distance between two vectors u, v ∈ Rd is ‖u−v‖2 =
(
∑

(ui − vi)2)1/2 and the Manhattan distance is
∑
|ui − vi|.

Given a set of n points V in Rd for some large dimension d, the goal to apply a random map Φ
from Rd to Rk (for k � d) so that with probability 2/3 (say), simultaneously for all pairs of points
u, v ∈ V ,

(1− ε)‖u− v‖2 ≤ ‖Φu− Φv‖p ≤ (1 + ε)‖u− v‖2 ,

where p = 1 or p = 2. We will use ‖Φu − Φv‖p ≈ε ‖u − v‖2 as shorthand for the last sandwich
inequality.

A classic result by Johnson and Lindenstrauss [6] and certain simplifications [1, 3, 5, 4] show
that if k = O(ε−2 log n), then a ”random transformation” does the trick. The main argument in
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all these proof is: Show using a measure concentration principle that

∀x ∈ Rd, Pr[‖Φx‖p 6≈ε ‖x‖2] = e−Ω(kε2) . (1)

Now plug in k as above and apply a union bound over all
(
n
2

)
possibilities x = u− v for u, v ∈ V .

It makes sense to abstract this and say that a distribution on Rd → Rk linear transformations
has the ”Johnson-Lindenstrauss” property if (1) holds for Φ drawn from this distribution. Note
the quantification: For any fixed (adversarial) x, ‖Φx‖p ≈ε ‖x‖ with high probability. By this we
actually mean that a family of distributions for increasingly large k, d has this property with the
same constant hiding in the Ω-notation. Once we have this definition, and since we know already it
is not an empty one, it makes sense to ask what is the best distribution satisfying the J-L property
in terms of computational resources? More precisely, we try to optimize

• the time it takes to reduce a vector, and

• the number of random bits used.

(The latter may seem not very important for applications but reducing this quantity can in fact
reduce the amount of space required when applying the dimension reduction to data streams.) For
example, the constructions in [1, 3, 5, 4] require O(kd) time and random bits. The construction in
[2] requires O(max{d log d, k3}) time for p = 2 and O(max{d log d, k2}) for p = 1. A new proof that
will be given in the talk offers better results. We review some relevant background in this writeup.

2 Finite Dimensional Real Banach Spaces

A Banach space is a normed vector space satisfying a certain topological property which we will
not really need in the talk. Here we only consider finite dimensional real Banach spaces and some
standard norms. Some definitions and facts:

• For 1 ≤ p < ∞ the space `d
p is Rd equipped with the norm ‖x‖ = ‖x‖p = (

∑
|xi|p)1/p . For

p = ∞, `d
p is Rd equipped with the norm ‖x‖ = ‖x‖∞ = max |xi|. We call p the norm index

or norm exponent.

• For norm index p the dual norm q is defined by 1/q + 1/p = 1.

• If p, q are dual norm indices, then for all x, y ∈ Rd,

〈x, y〉 =
∑

xiyi ≤ ‖x‖p‖y‖q .

This is called the Hölder inequality. For p = q = 2, this is commonly known as Cauchy-
Schwartz inequality.

• If p, q are dual norm indices, then for x ∈ `d
p

‖x‖p = sup
y∈`d

q ,‖y‖q≤1

〈x, y〉 .
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• For a matrix A ∈ Rk×d and two norm indices p1, p2 we define the operator norm ‖A‖p1→p2 as

sup
x∈`d

p1
,‖x‖≤1

‖Ax‖p2 .

Equivalently, using the above,

‖A‖p1→p2 = sup
x∈`d

p1
,‖x‖≤1

sup
y∈`d

q2
,‖y‖≤1

yT Ax ,

where q2 is the dual norm to p2.

Exercise: Convince yourself that ‖A‖p1→p2 = ‖AT ‖q2→q1 , where q1, q2 are dual to p1, p2,
respectively.

• Riesz-Thorin interpolation theorem: Let p1, r1, p2, r2 be some norm indices. Let A ∈
Rk×d, and assume ‖A‖p1→r1 ≤ C1 and ‖A‖p2→r2 ≤ C2. Let 0 ≤ λ ≤ 1, and let p, r be such
that 1

p = λ 1
p1

+ (1− λ)1
p2

and 1
r = λ 1

r1
+ (1− λ)1

r 2
. (geometrically, the point (1/p, 1/r) is on

the line connecting (1/p1, 1/r1) and (1/p2, 1/r2)). Then ‖A‖p→r ≤ Cλ
1 C1−λ

2 .

3 The Walsh-Hadamard Matrix

It is sometimes useful to assume that the coordinates of Rd are structured. One commonly used
structure is the discrete line. Often it is useful to assume that d = 2t for some integer t and
coordinate i is a t-dimensional vector over F2 (the field with two elements 0, 1) representing the
number in binary.

The Walsh-Hadamard matrix Hd ∈ Rd×d is defined by

Hd(i, j) = d−1/2(−1)〈i,j〉 ,

where 〈i, j〉 is the scalar product of i, j over Ft
2. It is a type of Fourier transform matrix.

Exercise: Prove that Hd can be recursively written as

Hd =
1√
2

(
Hd/2 Hd/2

Hd/2 −Hd/2

)
.

Using this, convince yourself that x 7→ Hdx can be computed in time O(d log d) for a vector
x ∈ Rd.
Exercise: Prove that Hd is an orthogonal matrix (the columns have unit Euclidean length and
are orthogonal to each other).
Exercise: Let 1 ≤ p ≤ 2 be a norm index, and let q be its dual. Prove that ‖Hd‖p→q ≤ d1/2−1/p

(Hint: find ‖Hd‖1→∞ and use Riesz-Thorin). This is often known as the Hausdorff-Young
theorem.

4 Measure Concentration on the Hypercube

Let f be a function from `d
2 to R that is C-Lipschitz (this means that for any x, y ∈ `d

2, |f(x)−f(y)| ≤
C‖x− y‖2) and convex.

3



Example: f(x) = ‖Ax‖p for some matrix A ∈ Rk×d. Then f is convex and (‖A‖2→p)-Lipschitz.

Now let X1, . . . , Xd be d independent {±1} random variables. Let Mf be a median of f(X1, . . . , Xd).
That is, Mf is a number such that both Pr[f(X1, . . . , Xd) ≥ Mf ] ≥ 1/2 and Pr[f(X1, . . . , Xd) ≤
Mf ] ≥ 1/2. Then

Pr[|f(X1, . . . , Xd)−Mf | > t] ≤ 4 exp(−t2/8C2) .

This was proved by Talagrand (see proof in [7]) and is a powerful generalization of many other
measure concentration theorems.

5 Error Correcting Codes

Error correcting codes are combinatorial objects with many nice properties useful in engineering
and also in theoretical computer science. A good introduction can be found in [8]. Another great
resource is Madhu Sudan’s lecture notes http://theory.lcs.mit.edu/˜madhu/FT01/. Here we con-
centrate on the definition of linear binary error correcting codes. We will not discuss constructions.

The field of interest is F2. A [k, m,D]-code is a linear subspace of Fk
2 of dimension m ≤ k with

the property that for any nonzero x ∈ Fk
2, ∆(x) ≥ D, where ∆(x) is the Hamming weight of x

(number of nonzeros).
If V is a [k, m,D]-code, then the dual code V ⊥ is the space of all vectors y ∈ Fk

2 such that the
scalar product 〈x, y〉 = 0 for all x ∈ V . By standard linear algebra, dim V ⊥ = k −m.
Exercise:

1. A set of vectors U ⊆ Fk
2 is s-wise independent if for any set i1 < i2 · · · < is ∈ [k] of coordinates,

the number of vectors x ∈ U such that (xi1 , . . . , xis) = y is exactly |U |/2s, for any y ∈ Fs
2.

Let V ⊥ ⊆ Fk
2 be the dual of a [k, m,D]-code. Prove that V ⊥ is (D − 1)-wise independent.

2. Let V ⊥ be as above, and assume in addition that D ≥ 3 and odd. We transform V ⊥ into
a matrix A of size 2k−m × k by writing each codeword x ∈ V ⊥ as a row of A, turning
0’s to (+1)’s and 1’s to (−1)’s (note that V ⊥ contains exactly 2k−m vectors). Prove that
‖A‖2→(D−1) ≤ c2(k−m)/(D−1) where c is a constant that depends on D only (and not on
k, m). (Hint: Consider the random variable (y · x)D−1 for a random row y of A and a fixed
x ∈ `d

2). Find the best bound you can on ‖A‖2→p for 2 ≤ p ≤ D − 1 (Hint: Find ‖A‖2→2

exactly and then apply Riesz-Thorin).

3. Let A be as above. Prove that if we permute the rows of A then (up to a constant factor) the
columns of A are a subset of the columns of H2k−m . (Hint: We only need the fact that V ⊥ is
a vector space.) Conclude that x 7→ AT x can be ”efficiently” computed for any x ∈ R2k−m

.
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