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Abstract

We consider the following problem: given a set of clus-
terings, find a clustering that agrees as much as possible
with the given clusterings. This problem, clustering aggre-
gation, appears naturally in various contexts. For example,
clustering categorical data is an instance of the problem:
each categorical variable can be viewed as a clustering of
the input rows. Moreover, clustering aggregation can be
used as a meta-clustering method to improve the robustness
of clusterings. The problem formulation does not require a-
priori information about the number of clusters, and it gives
a natural way for handling missing values. We give a formal
statement of the clustering-aggregation problem, we discuss
related work, and we suggest a number of algorithms. For
several of the methods we provide theoretical guarantees on
the quality of the solutions. We also show how sampling can
be used to scale the algorithms for large data sets. We give
an extensive empirical evaluation demonstrating the useful-
ness of the problem and of the solutions.

1 Introduction

Clustering is an important step in the process of data
analysis with applications to numerous fields. Informally,
clustering is defined as the problem of partitioning data ob-
jects into groups (clusters), such that objects in the same
group are similar, while objects in different groups are dis-
similar. This definition assumes that there is some well
defined quality measure that captures intra-cluster similar-
ity and/or inter-cluster dissimilarity, and then clustering be-
comes the problem of grouping together data objects so that
the quality measure is optimized.

In this paper we propose a novel approach to clustering
that is based on the concept of aggregation. We assume that
given the data set we can obtain some information on how
these points should be clustered. This information comes
in the form of m clusterings C1, . . . , Cm. The objective is to

C1 C2 C3 C

v1 1 1 1 1

v2 1 2 2 2

v3 2 1 1 1

v4 2 2 2 2

v5 3 3 3 3

v6 3 4 3 3

Figure 1. An example of clustering aggregation

produce a single clustering C that agrees as much as possible
with the m clusterings. We define a disagreement between
two clusterings C and C ′ as a pair of objects (v, u) such
that C places them in the same cluster, while C ′ places them
in a different cluster, or vice versa. If d(C, C ′) denotes the
number of disagreements between C and C ′, then the task is
to find a clustering C that minimizes

∑m

i=1 d(Ci, C).
As an example, consider the dataset V = {v1, v2, v3,

v4, v5, v6} that consists of six objects, and let C1 =
{{v1, v2}, {v3, v4}, {v5, v6}}, C2 = {{v1, v3}, {v2, v4},
{v5}, {v6}}, and C3 = {{v1, v3}, {v2, v4}, {v5, v6}} be
three clusterings of V . Figure 1 shows the three cluster-
ings, where each column corresponds to a clustering, and
a value i denotes that the tuple in that row belongs in the
i-th cluster of the clustering in that column. The rightmost
column is the clustering C = {{v1, v3}, {v2, v4}, {v5, v6}}
that minimizes the total number of disagreements with the
clusterings C1, C2, C3. In this example the total number
of disagreements is 5: one with the clustering C2 for the
pair (v5, v6), and four with the clustering C1 for the pairs
(v1, v2), (v1, v3), (v2, v4), (v3, v4). It is not hard to see that
this is the minimum number of disagreements possible for
any partition of the dataset V .

We define clustering aggregation as the optimization
problem where, given a set of m clusterings, we want to
find the clustering that minimizes the total number of dis-
agreements with the m clusterings. Clustering aggregation
provides a general framework for dealing with a variety of
problems related to clustering: (i) it gives a natural cluster-
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Figure 2. Correlation clustering instance for the
dataset in Figure 1. Solid edges indicate distances of 1/3,
dashed edges indicate distances of 2/3, and dotted edges
indicate distances of 1.

ing algorithm for categorical data, which allows for a simple
treatment of missing values, (ii) it handles heterogeneous
data, where tuples are defined over incomparable attributes,
(iii) it determines the appropriate number of clusters and
it detects outliers, (iv) it provides a method for improving
the clustering robustness, by combining the results of many
clustering algorithms, (v) it allows for clustering of data that
is vertically partitioned in order to preserve privacy. We
elaborate on the properties and the applications of cluster-
ing aggregation in Section 2.

The algorithms we propose for the problem of clustering
aggregation take advantage of a related formulation, which
is known as correlation clustering [2]. We map clustering
aggregation to correlation clustering by considering the tu-
ples of the dataset as vertices of a graph, and summariz-
ing the information provided by the m input clusterings
by weights on the edges of the graph. The weight of the
edge (u, v) is the fraction of clusterings that place u and
v in different clusters. For example, the correlation clus-
tering instance for the dataset in Figure 1 is shown in Fig-
ure 2. Note that if the weight of the edge (u, v) is less than
1/2 then the majority of the clusterings place u and v to-
gether, while if the weight is greater than 1/2, the major-
ity places u and v in different clusters. Ideally, we would
like to cut all edges with weight more than 1/2, and not
cut all edges with weight less than 1/2. The goal in corre-
lation clustering is to find a partition of the vertices of the
graph that it cuts as few as possible of the edges with low
weight (less than 1/2), and as many as possible of the edges
with high weight (more than 1/2). In Figure 2, clustering
C = {{v1, v3}, {v2, v4}, {v5, v6}} is the optimal clustering.

Clustering aggregation has has been previously consid-
ered under a variety of names (consensus clustering, clus-
tering ensemble, clustering combination) in a variety of dif-
ferent areas: machine learning [19, 12], pattern recogni-
tion [14], bio-informatics [13], and data mining [21, 5]. The
problem of correlation clustering is interesting in its own

right, and it has recently attracted a lot of attention in the
theoretical computer-science community [2, 6, 8, 10]. We
review some of the related literature on both clustering ag-
gregation, and correlation clustering in Section 6.

Our contributions can be summarized as follows.

• We formally define the problem of clustering aggrega-
tion, and we demonstrate the connection between clus-
tering aggregation and correlation clustering.

• We present a number of algorithms for clustering ag-
gregation and correlation clustering. We also propose
a sampling mechanism that allows our algorithms to
handle large datasets. The problems we consider are
NP-hard, yet we are still able to provide approxima-
tion guarantees for many of the algorithms we propose.
For the formulation of correlation clustering we con-
sider we give a combinatorial 3-approximation algo-
rithm, which is an improvement over the best known
9-approximation algorithm.

• We present an extensive experimental study, where we
demonstrate the benefits of our approach. Further-
more, we show that our sampling technique reduces
the running time of the algorithms, without sacrificing
the quality of the clustering.

The rest of this paper is structured as follows. In Sec-
tion 2 we discuss the various applications of the clustering-
aggregation framework, which is formally defined in Sec-
tion 3. In Section 4 we describe in detail the proposed
algorithms for clustering aggregation and correlation clus-
tering, and the sampling-based algorithm that allows us to
handle large datasets. Our experiments on synthetic and real
datasets are presented in Section 5. Finally, Section 6 con-
tains a review of the related work, and Section 7 is a short
conclusion.

2 Applications of clustering aggregation

Clustering aggregation can be applied in various settings.
We will now present some of the main applications and fea-
tures of our framework.

Clustering categorical data: An important application
of clustering aggregation is that it provides a very natural
method for clustering categorical data. Consider a dataset
with tuples t1, . . . , tn over a set of categorical attributes
A1, . . . , Am. The idea is to view each attribute Aj as a
way of producing a simple clustering of the data: if Aj con-
tains kj distinct values, then Aj partitions the data in kj

clusters – one cluster for each value. Then, clustering ag-
gregation considers all those m clusterings produced by the
m attributes and tries to find a clustering that agrees as much
as possible with all of them.
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For example, consider a Movie database. Each tuple in
the database corresponds to a movie that is defined over a
set of attributes such as Director, Actor, Actress,
Genre, Year, etc, some of which take categorical val-
ues. Note that each of the categorical attributes defines nat-
urally a clustering. For example, the Movie.Genre at-
tribute groups the movies according to their genre, while
the Movie.Director according to who has directed the
movie. The objective is to combine all these clusterings into
a single clustering.

Clustering heterogeneous data: The clustering aggrega-
tion method can be particularly effective in cases where the
data are defined over heterogeneous attributes that contain
incomparable values. Consider for example the case that
there are many numerical attributes whose units are incom-
parable (say, Movie.Budget and Movie.Year) and so
it does not make sense to compare numerical vectors di-
rectly using an Lp-type distance measure. A similar situa-
tion arises in the case where the data contains a mix of cate-
gorical and numerical values. In such cases the data can be
partitioned vertically into sets of homogeneous attributes,
obtain a clustering for each of these sets by applying the
appropriate clustering algorithm, and then aggregate the in-
dividual clusterings into a single clustering.

Missing values: One of the major problems in clustering,
and data analysis in general, is the issue of missing values.
These are entries that for some reason (mistakes, omissions,
lack of information) are incomplete. The clustering aggre-
gation framework provides several ways for dealing with
missing values in categorical data. One approach is to av-
erage them out: an attribute that contains a missing value
in some tuple does not have any information about how this
tuple should be clustered, so we should let the remaining
attributes decide. When computing the fraction of cluster-
ings that disagree over a pair of tuples, we only consider the
attributes that actually have a value on these tuples.

Another approach, which we adopt in this paper, is to
assume that given a pair of tuples for which an attribute
contains at least one missing value, the attribute tosses a
random coin and with probability p it reports the tuples as
being clustered together, while with probability 1 − p it re-
ports them as being in separate clusters. Each pair of tuples
is treated independently. We are then interested in mini-
mizing the expected number of disagreements between the
clusterings.

Identifying the correct number of clusters: One of the
most important features of the formulation of clustering ag-
gregation is that there is no need to specify the number of
clusters in the result. The automatic identification of the
appropriate number of clusters is a deep research problem
that has attracted lots of attention [16, 18]. For most clus-
tering approaches the quality (likelihood, sum of distances

to cluster centers, etc.) of the solution improves as the num-
ber of clusters is increased. Thus, the trivial solution of all
singleton clusters is the optimal. There are two ways of
handling the problem. The first is to have a hard constraint
on the number of clusters, or on their quality. For example,
in agglomerative algorithms one can either fix in advance
the number of clusters in the final clustering, or impose a
bound on the distance beyond which no pair of clusters will
be merged. The second approach is to use model selec-
tion methods, e.g., Bayesian information criterion (BIC) or
cross-validated likelihood [18] to compare models with dif-
ferent numbers of clusters.

The formulation of clustering aggregation takes automat-
ically care of the selection of the number of clusters. If
many input clusterings place two objects in the same clus-
ter, then it will not be beneficial for a clustering-aggregation
solution to split these two objects. Thus, the solution of all
singleton clusters is not a trivial solution for our objective
function. Furthermore, if there are k subsets of data objects
in the dataset, such that the majority of the input clusterings
places them together, and separates them from the rest, then
the clustering aggregation algorithm will correctly identify
the k clusters, without any prior knowledge of k. Note that
in the example in Figures 1 and 2 the optimal solution C
discovers naturally a set of 3 clusters in the dataset.

Indeed, the structure of the objective function ensures
that the clustering aggregation algorithms will make their
own decisions, and settle naturally to the appropriate num-
ber of clusters. As we will show in our experimental sec-
tion, our algorithms take advantage of this feature and for all
our datasets they generate clusterings with very reasonable
number of clusters. On the other hand, if the user insists on
a predefined number of clusters, most of our algorithms can
be easily modified to return that specific number of clus-
ters. For example, the agglomerative algorithm described
in Section 4 can be made to continue merging clusters until
the predefined number is reached.

Detecting outliers: The ability to detect outliers is closely
related with the ability to identify the correct number of
clusters. If a node is not close to any other nodes, then, from
the point of view of the objective function, it would be bene-
ficial to assign that node in a singleton cluster. In the case of
categorical data clustering, the scenarios for detecting out-
liers are very intuitive: if a tuple contains many uncommon
values, it is does not participate in clusters with other tu-
ples, and it will be identified as an outlier. Another scenario
where it pays off to consider a tuple as an outlier is when the
tuple contains common values (and therefore it participates
in big clusters in the individual input clusterings) but there is
no consensus to a common cluster (for example, a horror
movie featuring actress Julia.Roberts and directed by
the “independent” director Lars.vonTrier).
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Improving clustering robustness: Different clustering al-
gorithms have different qualities and different shortcom-
ings. Some algorithms might perform well in specific
datasets but not in others, or they might be very sensitive
to parameter settings. For example, the single-linkage al-
gorithm is good in identifying elongated regions but it is
sensitive to clusters being connected with narrow strips of
points. The k-means method is a widely-used algorithm,
but it is sensitive to clusters of uneven size, and it can get
stuck in local optima.

We suggest that by aggregating the results of different
clustering we can improve significantly the robustness and
the quality of the final clustering. The idea is that different
algorithms make different “mistakes” that can be “canceled
out” in the final aggregation. Furthermore, for objects that
are outliers or noise, it is most likely that there will be no
consensus on how they should be clustered, and thus they
will be singled out by the aggregation algorithm. The intu-
ition is similar to performing rank aggregation for improv-
ing the results of web searches [9]. Our experiments in-
dicate that clustering aggregation can improve significantly
the results of individual algorithms.

Privacy-preserving clustering: Consider a situation where
a database table is vertically split and different attributes are
maintained in different sites. Such a situation might arise in
cases where different companies or governmental adminis-
trations maintain various sets of data about a common pop-
ulation of individuals. For such cases, our method offers a
natural model for clustering the data maintained in all sites
as a whole in a privacy-preserving manner, that is, without
the need for the different sites to reveal their data to each
other, and without the need to rely on a trusted authority.
Each site clusters its own data independently and then all
resulting clusterings are aggregated. The only information
revealed is which tuples are clustered together; no informa-
tion is revealed about data values of any individual tuples.

3 Description of the framework

We begin our discussion of the clustering aggregation
framework by introducing our notation. Consider a set of n
objects V = {v1, . . . , vn}. A clustering C of V is a parti-
tion of V into k disjoint sets C1, . . . , Ck, that is,

⋃k

i Ci = V
and Ci ∩ Cj = ∅, for all i 6= j. The k sets C1, . . . , Ck are
the clusters of C. For each v ∈ V we use C(v) to denote
the label of the cluster to which the object v belongs. It is
C(v) = j if and only if v ∈ Cj . In the sequel we consider
m clusterings: we write Ci to denote i-th clustering, and ki

for the number of clusters of Ci.
In the clustering aggregation problem the task is to find

a clustering that agrees as much as possible with a number
of already-existing clusterings. To make the notion more

precise, we need to define a measure of disagreement be-
tween clusterings. Consider first two objects u and v in V .
The following simple 0/1 distance function checks if two
clusterings C1 and C2 place u and v in the same clusters.

du,v(C1, C2) =







1 if C1(u) = C1(v) and C2(u) 6= C2(v),
or C1(u) 6= C1(v) and C2(u) = C2(v),

0 otherwise.

The distance between two clusterings C1 and C2 is defined
as the number of pairs of objects on which the two cluster-
ings disagree, that is,

dV (C1, C2) =
∑

(u,v)∈V ×V

du,v(C1, C2).

For the distance measure dV (·, ·) one can easily prove is that
it satisfies the triangle inequality on the space of clusterings.
We omit the proof due to space constraints.

Observation 1 Given a set of objects V and clusterings C1,
C2, C3 on V , we have

dV (C1, C3) ≤ dV (C1, C2) + dV (C2, C3)

The clustering aggregation problem can now be formalized
as follows.

Problem 1 (Clustering aggregation) Given a set of ob-
jects V and m clusterings C1, . . . , Cm on V , compute a new
clustering C that minimizes the total number of disagree-
ments with all the given clusterings, i.e., it minimizes

D(C) =
m

∑

i=1

dV (Ci, C).

The clustering aggregation problem is also defined in [13],
where it is shown to be NP-complete using the results of
Barthelemy and Leclerc [3].

The algorithms we propose for the problem of clustering
aggregation take advantage of a related formulation, which
is known as correlation clustering [2]. Formally, correlation
clustering is defined as follows.

Problem 2 (Correlation clustering) Given a set of objects
V , and distances Xuv ∈ [0, 1] for all pairs u, v ∈ V , find
a partition C for the objects in V that minimizes the score
function

d(C) =
∑

(u,v)
C(u)=C(v)

Xuv +
∑

(u,v)
C(u)6=C(v)

(1 − Xuv).
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Correlation clustering is a generalization of clustering
aggregation. Given the m clusterings C1, . . . , Cm as input
one can construct an instance of the correlation clustering
problem by defining the distances Xuv appropriately. In
particular, let Xuv = 1

m
· |{i | 1 ≤ i ≤ m and Ci(u) 6=

Ci(v)}| be the fraction of clusterings that assign the pair
(u, v) into different clusters. For a candidate solution C of
correlation clustering, if C places u, v in the same cluster it
will disagree with mXuv of the original clusterings, while
if C places u, v in different clusters it will disagree with the
remaining m(1−Xuv) clusterings. Thus, clustering aggre-
gation can be reduced to correlation clustering, and as a re-
sult correlation clustering is also an NP-complete problem.
We note that an instance of correlation clustering produced
by an instance of clustering aggregation is a restricted ver-
sion of the correlation clustering problem. It is not hard to
show that the values Xuv obey the triangle inequality, that
is, Xuw ≤ Xuv + Xvw for all u, v and w in V .

Since both problems we consider are NP-complete it
is natural to seek algorithms with provable approximation
guarantees. For the clustering aggregation problem, it is
trivial to obtain a 2-approximation solution. The idea is to
take advantage of the triangle inequality property of the dis-
tance measure dV (·, ·). Assume that we are given m objects
in a metric space and we want to find a new point that min-
imizes the sum of distances from the given objects. Then
it is a well known fact that selecting the best among the m
original objects yields a factor 2(1− 1/m) approximate so-
lution. For our problem, this method suggests taking as the
solution to clustering aggregation the clustering Ci that min-
imizes D(Ci). Despite the small approximation factor, this
solution is non-intuitive, and we observed that it does not
work well in practice.

The above algorithm cannot be used for the problem
of correlation clustering – there are no input clusterings to
choose from. In general, the correlation clustering problem
we consider is not equivalent to the clustering aggregation.
There is an extensive literature in the theoretical computer
science community on many different variants of the corre-
lation clustering problem. We review some of these results
in Section 6. Our problem corresponds to the weighted cor-
relation clustering problem with linear cost functions [2],
where the weights on the edges obey the triangle inequal-
ity. The best known approximation algorithm for this case
can be obtained by combining the results of Bansal et al. [2]
and Charikar et al. [6], giving an approximation ratio of 9.
The algorithm does not take into account the fact that the
weights obey the triangle inequality.

4 Algorithms

In this section we present the suggested algorithms for
clustering aggregation. Most of our algorithms approach

the problem through the correlation-clustering problem, and
most of the algorithms are parameter-free.

The BESTCLUSTERING algorithm: This is the trivial al-
gorithm that was already mentioned in the previous sec-
tion. Given m clusterings C1, . . . , Cm, BESTCLUSTERING

finds the clustering Ci from them that minimizes the total
number of disagreements D(Ci). Using the data structures
described in [3] the best clustering can be found in time
O(mn). As discussed, this algorithm yields a solution with
approximation ratio of at most 2(1 − 1/m). We can show
that this bound is tight, that is, there exists an instance of the
clustering aggregation problem, where the algorithm BEST-
CLUSTERING produces a solution that is exactly 2(1−1/m)
worse than the optimal. The proof of the lower bound ap-
pears in the full version of the paper.

The algorithm is specific to clustering aggregation—it
cannot be used for correlation clustering. An interesting
approach to the correlation clustering problem that might
lead to a better approximation algorithm is to reconstruct m
clusterings from the input distance matrix [Xuv ]. Unfortu-
nately, we are not aware of a polynomial-time algorithm for
this problem of decomposition into clusterings.

The BALLS algorithm: The BALLS algorithm works on the
correlation clustering problem, and thus, it takes as input the
matrix of pairwise distances Xuv. Equivalently, we view the
input as a graph whose vertices are the tuples of a dataset,
and the edges are weighted by the distances Xuv.

The algorithm is defined with an input parameter α, and
it is the only algorithm that requires an input parameter. By
the theoretical analysis we sketch below, we can set the pa-
rameter α to a constant value. However, different values of
α can lead to better solutions in practice.

The intuition of the algorithm is to find a set of ver-
tices that are close to each other and far from other vertices.
Given such a set, we consider it to be a cluster, we remove it
from the graph, and we proceed with the rest of the vertices.
The difficulty lies in finding such a set, since in principle
any subset of the vertices can be a candidate. We overcome
the difficulty by resorting again to the triangle inequality—
this time for the distances Xuv. In order to find a good
cluster we take all vertices that are close (within a “ball”)
to a vertex u. The triangle inequality guarantees that if two
vertices are close to u, then they are also relatively close to
each other. We also note that it is intuitive that good clusters
should be ball-shaped: since our cost function penalizes for
long edges that are not cut, we do not expect to have elon-
gated clusters in the optimal solution.

More formally the algorithm is described as follows. It
first sorts the vertices in increasing order of the total weight
of the edges incident on each vertex, a heuristic that we ob-
served to work well in practice. At every step, the algo-
rithm picks the first unclustered node u in that ordering. It
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then finds the set of nodes S that are at a distance of at
most 1/2 from the node u, and it computes the average dis-
tance d(u, S) of the nodes in S to node u. If d(u, S) ≤ α
then the nodes in S ∪ {u} are considered to form a cluster,
otherwise, node u forms a singleton cluster.

The cost of BALLS algorithm is guaranteed to be at most
3 times the cost of the optimal clustering. This result im-
proves the previously best-known 9 approximation. The
proof is defered to the full version of the paper, and here
we give only a short sketch.

Theorem 1 For α = 1
4 , the approximation ratio of the

BALLS algorithm is at most 3.

Sketch of the proof: The proof proceeds by bounding the
cost that the algorithm pays for each edge (u, v) in terms of
the cost that the optimal algorithm pays for the same edge.
We make use of the fact that for an edge of distance c, if
the algorithm takes the edge, then it pays at most c/(1 − c)
times the cost of the optimal, while if it does not take the
edge then it pays at most (1−c)/c times the optimal cost. It
follows that taking an edge of cost less than 1/2, or splitting
an edge of cost more than 1/2 is an optimal decision.

Given a node u, if the BALLS algorithm decides to place
u into a singleton cluster, then this means that

∑

i∈S Xui ≥
1
4 |S|. Therefore, the cost paid by BALLS is at most 3

4 |S|.
At the same time, since the weight of all edges (u, i), for
i ∈ S is less than 1/2, the optimal algorithm takes all edges
and pays at least 1

4 |S|, giving approximation ratio 3.
In the case that the algorithm creates the cluster C =

S ∪ {u} the decision to merge edges (u, i) for i ∈ S, and
split the edges (u, j) for j 6∈ S is optimal. We need to con-
sider the edges Xij where i, j ∈ S, or i ∈ S and j 6∈ S.
We consider the case that i, j ∈ S; the other case is handled
symmetrically. We sort the nodes in order of increasing dis-
tance from node u, and for each node j we consider the cost
of all edges Xij with i < j. First, we note that if Xuj ≤ 1

4
then Xij ≤ Xui + Xuj ≤ 1

2 , so the decision of the algo-
rithm to take edge (i, j) is optimal. For Xuj > 1

4 , let Cj

denote the set of nodes i, where i < j. A key observation
is that

∑

i∈Cj
Xui ≤

1
4 |Cj |: since we omit only edges with

high cost, the average cost cannot be more than 1
4 . Using the

triangle inequality we can prove that
∑

i∈Cj
Xij ≤ 3

4 |Cj |,
that is, the sum of Xij for i ∈ Cj is also small. This im-
plies that the optimal algorithm cannot gain a lot by split-
ting some of the Xij edges. The cost of the optimal can
be shown to be at least 1

4 |Cj |, giving again approximation
ratio 3.

�

There are special cases where it is possible to prove a bet-
ter approximation ratio. For the case that m = 3 it is easy
to show that the cost of the BALLS algorithm is at most 2
times that of the optimal solution. The complexity of the al-
gorithm is O(mn2) for generating the table and O(n2) for
running the algorithm.

In our experiments we have observed that the value 1
4

tends to be small as it creates many singleton clusters. For
many of our real datasets we have found that α = 2

5 leads
to better solutions.

The AGGLOMERATIVE algorithm: The AGGLOMERA-
TIVE algorithm is a standard bottom-up algorithm for the
correlation clustering problem. It starts by placing every
node into a singleton cluster. It then proceeds by consider-
ing the pair of clusters with the smallest average distance.
The average distance between two clusters is defined as the
average weight of the edges between the two clusters. If the
average distance of the closest pair of clusters is less than
1/2 then the two clusters are merged into a single cluster. If
there are no two clusters with average distance smaller than
1/2, then no merging of current clusters can lead to a so-
lution with improved cost d(C). Thus, the algorithm stops,
and it outputs the clusters it has created so far.

The AGGLOMERATIVE algorithm has the desirable fea-
ture that it creates clusters where the average distance of
any pair of nodes is at most 1/2. The intuition is that the
opinion of the majority is respected on average. Using this
property we are able to prove that when m = 3, the AG-
GLOMERATIVE algorithm produces a solution with cost at
most 2 times that of the optimal solution. The complex-
ity of the algorithm is O(mn2) for creating the matrix plus
O(n2 log n) for running the algorithm.

The FURTHEST algorithm: The FURTHEST algorithm is a
top-down algorithm that works on the clustering correlation
problem. It is inspired by the furthest-first traversal algo-
rithm, for which Hochbaum and Shmoys [17] showed that
it achieves a 2-approximation for the clustering formulation
of p-centers. As the BALLS algorithm uses a notion of a
“center” to find clusters and repeatedly remove them from
the graph, the FURTHEST algorithm uses “centers” to parti-
tion the graph in a top-down fashion.

The algorithm starts by placing all nodes into a single
cluster. Then it finds the pair of nodes that are furthest apart,
and places them into different clusters. These two nodes
become the centers of the clusters. The remaining nodes
are assigned to the center that incurs the least cost. This
procedure is repeated iteratively: at each step a new center
is generated that is the furthest from the existing centers,
and the nodes are assigned to the center that incurs the least
cost. At the end of each step, the cost of the new solution is
computed. If it is lower than that of the previous step then
the algorithm continues. Otherwise, the algorithm outputs
the solution computed in the previous step. The complex-
ity of the algorithm is O(mn2) for creating the matrix and
O(k2n) for running the algorithm, where k is the number
of clusters created.

The LOCALSEARCH algorithm: The LOCALSEARCH al-
gorithm is an application of a local-search heuristic to the
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problem of correlation clustering. The algorithm starts with
some clustering of the nodes. This clustering could be a
random partition of the data, or it could be obtained by run-
ning one of the algorithms we have already described. The
algorithm then goes through the nodes and it considers plac-
ing them into a different cluster, or creating a new singleton
cluster with this node. The node is placed in the cluster that
yields the minimum cost. The algorithm iterates until there
is no move that can improve the cost. The LOCALSEARCH

can be used as a clustering algorithm, but also as a post-
processing step, to improve upon an existing solution.

When considering a node v, the cost d(v, Ci) of assign-
ing a node v to a cluster Ci is computed as follows.

d(v, Ci) =
∑

u∈Ci

Xvu +
∑

u∈S∩Ci

(1 − Xvu)

The first term is the cost of merging v in Ci, while the
second term is the cost of not merging node v with the
nodes not in Ci. We compute d(v, Ci) efficiently as fol-
lows. For every cluster Ci we compute and store the cost
M(v, Ci) =

∑

u∈Ci
Xvu and the size of the cluster |Ci|.

Then the distance of v to Ci is

d(v, Ci) = M(v, Ci) +
∑

j 6=i

(|Cj | − M(v, Cj))

The cost of assigning node v to a singleton cluster is
∑

j(|Cj | − M(v, Cj)).
The running time of the LOCALSEARCH algorithm,

given the distance matrix Xuv , is O(In2), where I is the
number of local search iterations until the algorithm con-
verges to a solution for which no better move can be found.
Our experiments showed that the LOCALSEARCH algo-
rithm is quite effective, and it improves significantly the
solutions found by the previous algorithms. Unfortunately,
the number of iterations tends to be large, and thus the al-
gorithm is not scalable to large datasets.

4.1 Handling large datasets

The algorithms we described in Section 4 take as in-
put the distance matrix, so their complexity is quadratic in
the number of data objects in the dataset. The quadratic
complexity is inherent in the correlation clustering problem,
since the input to the problem is a complete graph. Given
a node, the decision of placing the node to a cluster has to
take into account not only the cost of merging the node to
the cluster, but also the cost of not placing the node to the
other clusters. Furthermore, the definition of the cost func-
tion does not allow for an easy summarization of the clus-
ters, a technique that is commonly used in many clustering
algorithms. However, the quadratic complexity makes the

algorithms inapplicable to large datasets. We will now de-
scribe the algorithm SAMPLING, which uses sampling to
reduce the running time of the algorithms.

The SAMPLING algorithm is run on top of the algorithms
we described Section 4. The algorithm performs a pre-
processing and post-processing step that are linear on the
size of the dataset. In the pre-processing step the algorithm
samples a set of nodes, S, uniformly at random from the
dataset. These nodes are given as input to one of the cluster-
ing aggregation algorithms. The output is a set of ` clusters
{C1, ..., C`} of the nodes in S. In the post-processing step
the algorithm goes through the nodes in the dataset not in S.
For every node it decides whether or to place it in one of the
existing clusters, or to create a singleton cluster. In order
to perform this step efficiently, we use the same technique
as for the LOCALSEARCH algorithm. We observed exper-
imentally that at the end of the assignment phase there are
too many singleton clusters. Therefore, we collect all sin-
gleton clusters and we run the clustering aggregation again
on this subset of nodes.

The size of the sample S is determined so that if there
is a large cluster in the dataset the sample will contain at
least one node from the cluster. Large cluster means a
cluster that contains a constant fraction of the nodes in the
dataset. Using the Chernoff bounds we can prove that sam-
pling O(log n) nodes is sufficient to ensure that we will se-
lect at least one of the nodes in a large cluster with high
probability. Note that although nodes in small clusters may
not be selected, these will be assigned in singleton clusters
in the post-processing step. When clustering the singletons,
they will be clustered together. Since the size of these clus-
ters is small this does not incur a significant overhead on the
algorithm.

5 Experimental evaluation

We have conducted extensive experiments to test the
quality of the clusterings produced by our algorithms on
a varied collection of synthetic and real datasets. Further-
more, for our SAMPLING algorithm, we have experimented
with the quality vs. running-time trade off.

5.1 Improving clustering robustness

The goal in this set of experiments is to show how clus-
tering aggregation can be used to improve the quality and
robustness of widely used vanilla-clustering algorithms. For
the two experiments we are describing we used synthetic
datasets of two-dimensional points.

The first dataset is shown in Figure 3. An intuitively
good clustering for this dataset consists of the seven per-
ceptually distinct groups of points. We ran five different
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clustering algorithms implemented in Matlab: single link-
age, complete linkage, average linkage, Ward’s clustering,
and k-means. For all of the clusterings we set the num-
ber of clusters to be 7, and for the rest parameters, if any,
we used Matlab’s defaults. The results for the five cluster-
ings are shown in the first five panels of Figure 3. One sees
that all clusterings are imperfect. In fact, the dataset con-
tains features that are known to create difficulties for the se-
lected algorithms, e.g., narrow “bridges” between clusters,
uneven-sized clusters, etc. The last panel in Figure 3 shows
the results of aggregating the five previous clusterings. The
aggregated clustering is better than any of the input clus-
terings (although average-linkage comes very close), and it
shows our intuition of how mistakes in the input clusterings
can be “canceled out”.

In our second experiment the goal is to show how clus-
tering aggregation can be used to identify the “correct” clus-
ters, as well as outliers. Three datasets were created as fol-
lows: k∗ cluster centers were selected unifromly at random
in the unit square, and 100 points were generated from the
normal distribution around each cluster center. For the three
datasets we used k∗ = 3, 5, and 7, respectively. An ad-
ditional 20% of the total number of points were generated
uniformly from the unit square and they were added in the
datasets. For each of the three datasets we ran k-means with
k = 2, 3, . . . , 10, and we aggregated the resulting cluster-
ings, that is, in each dataset we performed clustering ag-
gregation on 9 input clusterings. For lack of space, the in-
put clusterings are not shown; however, most are imperfect.
Obviously, when k is too small some clusters get merged,
and when k is too large some clusters get split. On the other
hand, the aggregated clusterings, for the three datasets, are
shown in Figure 4. We see that the main clusters identi-
fied are precisely the correct clusters. Small additional clus-
ters that are found contain only points from the background
“noise”, and they can be clearly characterized as outliers.

5.2 Clustering categorical data

In this section we use the ideas we discussed in Section 2
for performing clustering of categorical datasets. We used
three datasets from the UCI Repository of machine learn-
ing databases [4]. The first dataset, Votes, contains vot-
ing information for 435 persons. For each person there are
votes on 16 issues (yes/no vote viewed as categorical val-
ues), and a class label classifying a person as republi-
can or democrat. There are a total of 288 missing val-
ues. The second dataset, Mushrooms, contains information
on physical characteristics of mushrooms. There are 8,124
instances of mushrooms, each described by 22 categorical
attributes, such as shape, color, odor, etc. There is a class
label describing if a mushroom is poisonous or edi-
ble, and there are 2,480 missing values in total. Finally,

the third dataset, Census, has been extracted from the cen-
sus bureau database, and it contains demographic informa-
tion on 32,561 people in the US. There are 8 categorical at-
tributes (such as education, occupation, marital status, etc.)
and 6 numerical attributes (such as age, capital gain, etc.).
Each person is classified according to whether they receive
an annual salary of more than $50K or less.

For each of the datasets we perform clustering based on
the categorical attributes and we compare the clusters using
the class labels of the datasets. The intuition is that cluster-
ings with “pure” clusters, i.e., clusters in which all objects
have the same class label, are preferable. Thus, if a cluster-
ing contains k clusters with sizes s1, . . . , sk, and the sizes of
the majority class in each cluster are m1, . . . , mk, respec-
tively, then we measure the quality of the clustering by the
classification error, defined as

EC =

∑k

i=1(si − mi)
∑k

i=1 si

=

∑k

i=1(si − mi)

n
.

If a clustering has EC value equal to 0 it means that it con-
tains only pure clusters. Notice that clusterings with many
clusters tend to have smaller EC values—in the extreme
case if k = n then EC = 0 since singleton clusters are pure.
We remark that the use of the term “classification error” is
somehow abusing since no classification is performed in the
formal sense, (i.e., using training and test data, cross valida-
tion, etc); the classification-error measure is only indicative
of the cluster quality, since clustering and classification are
two different problems. It is not clear that the best clusters
in the dataset correspond to the existing classes. Depend-
ing on the application one may be interested in discovering
different clusters.

We also run comparative experiments with the categor-
ical clustering algorithm ROCK [15], and the much more
recent algorithm LIMBO [1]. ROCK uses the Jaccard coef-
ficient to measure tuple similarity, and places a link between
two tuples whose similarity exceeds a threshold θ. For our
experiments, we used values of θ suggested by Guha et
al. [15] in the original ROCK paper. LIMBO uses informa-
tion theoretic concepts to define clustering quality. It clus-
ters together tuples so that the conditional entropy of the
attribute values within a cluster is low. For the parameter φ
of LIMBO we used again values suggested in [1].

The results for the Votes and Mushrooms datasets are
shown in Tables 2 and 3, respectively. Except for the classi-
fication error (EC), we also show the number of clusters of
each clustering (k), and the disagreement error (ED), which
is the measure explicitly optimized by our algorithms. Since
the clustering aggregation algorithms make their own deci-
sions for the resulting number of clusters, we have run the
other two algorithms for the same values of k so that we en-
sure fairness. Overall the classification errors are compara-
ble with the exception of LIMBO’s impressive performance

8



Single linkage Complete linkage

Average linkage Ward’s clustering

K−means Clustering aggregation

Figure 3. Clustering aggregation on five different input clusterings. To obtain the last plot, which is
the result of aggregating the previous five plots, the AGGLOMERATIVE algorithm was used.
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Figure 4. Finding the correct clusters and outliers.

c1 c2 c3 c4 c5 c6 c7

Poisonous 808 0 1296 1768 0 36 8
Edible 2864 1056 0 96 192 0 0

Table 1. Confusion matrix for class labels and clus-
ters found by the AGGLOMERATIVE algorithm on Mush-
rooms dataset.

on Mushrooms for k = 7 and k = 9. Our algorithms
achieve the lowest distance error, and classification error
that is close to that of the optimal. Furthermore, the attrac-
tiveness of the algorithms AGGLOMERATIVE, FURTHEST,
and LOCALSEARCH lies in the fact that they are completely
parameter-free! Neither a threshold nor the number of clus-
ters need to be specified. The number of clusters discovered
by our algorithms seem to be very reasonable choices: for
the Votes dataset, most people vote according to the official
position of their political parties, so having two clusters is
natural; for the Mushrooms dataset, notice that both ROCK
and LIMBO achieve much better quality for the suggested
values k = 7 and k = 9, so it is quite likely that the cor-
rect number of clusters is around these values. Indicatively,
in Table 1 we present the confusion matrix for the cluster-
ing produced by the AGGLOMERATIVE algorithm on the
Mushrooms dataset.

For the Census dataset, clustering aggregation algo-
rithms report about 50-60 clusters. To run clustering ag-
gregation on the Census dataset we need to resort to the
SAMPLING algorithm. As an indicative result, when the
SAMPLING uses the FURTHEST algorithm to cluster a sam-
ple of 4,000 persons, we obtain 54 clusters and the classifi-
cation error is 24%. ROCK does not scale for a dataset of
this size, while LIMBO with parameters k = 2 and φ = 1.0
gives classification error 27.6%. For contrasting these num-
bers, we mention that supervised classification algorithms
(like decision trees and Bayes classifiers) yield classifica-
tion error between 14 and 21%—but again, clustering is

k EC(%) ED

Class labels 2 0 34,184
Lower bound 28,805
BESTCLUSTERING 3 15.1 31,211
AGGLOMERATIVE 2 14.7 30,408
FURTHEST 2 13.3 30,259
BALLSα=0.4 2 13.3 30,181
LOCALSEARCH 2 11.9 29,967
ROCKk=2,θ=0.73 2 11 32,486
LIMBOk=2,φ=0.0 2 11 30,147

Table 2. Results on Votes dataset.

a conceptually different task than classification. We vi-
sually inspected the smallest of the 54 different clusters,
and many corresponded to distinct social groups, for ex-
ample, male Eskimos occupied with farming-fishing, mar-
ried Asian-Pacific islander females, unmarried executive-
manager females with high-education degrees, etc. We omit
a more detailed report due to lack of space.

5.3 Handling large datasets

In this section we describe our experiments with the
SAMPLING algorithm that allows us to apply clustering ag-
gregation to large datasets. First we use the Mushrooms
dataset to experiment with the behavior of our algorithms
as a function of the sample size. As we saw in Table 3, the
number of clusters found with the non-sampling algorithms
is around 10. When sampling is used, the number of clusters
found in the sample remains close to 10. For small sample
size, clustering the sample is relatively fast compared to the
post-processing phase of assigning the non-sampled points
to the best cluster, and the overall running time of the SAM-
PLING algorithm is linear. In Figure 5 (left), we plot the run-
ning time of the SAMPLING algorithm, as a fraction of the
running time of the non-sampling algorithm, and we show
how it changes as we increase the sample size. For a sam-
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Figure 5. Scalability Experiments

k EC(%) ED

Class labels 2 0 13.537 M
Lower bound 8.388 M
BESTCLUSTERING 5 35.4 8.542 M
AGGLOMERATIVE 7 11.1 9.990 M
FURTHEST 9 10.4 10.169 M
BALLSα=0.4 10 14.2 11.448 M
LOCALSEARCH 10 10.7 9.929 M
ROCKk=2,θ=0.8 2 48.2 16.777 M
ROCKk=7,θ=0.8 7 25.9 10.568 M
ROCKk=9,θ=0.8 9 9.9 10.312 M
LIMBOk=2,φ=0.3 2 10.9 13.011 M
LIMBOk=7,φ=0.3 7 4.2 10.505 M
LIMBOk=9,φ=0.3 9 4.2 10.360 M

Table 3. Results on Mushrooms dataset.

ple of size 1600 we achieve more than 50% reduction of the
running time. At the same time, the classification error of
the algorithm converges very fast to the error of the non-
sampling algorithms. This is shown in Figure 5 (middle).
For sample size 1600 we have almost the same classifica-
tion error, with only half of the running time.

We also measured the running time of the SAMPLING

algorithm for large synthetic datasets. We repeated the
configuration of the experiments shown in Figure 4 but
on a larger scale. Each dataset consists of points gen-
erated from clusters normally distributed around five cen-
ters plus an additional 20% of uniformly distributed points.
We generate datasets of sizes 50K, 100K, 500K, and 1M
points. We then cluster the points using Matlab’s k-means
for k = 2, . . . , 10, and we run SAMPLING clustering aggre-
gation on the resulting 9 clusterings. The results are shown
in Figure 5 (right). These results are for sample size equal
to 1000. Once again, the five correct clusters were identi-
fied in the sample, and the running time is dominated by the
time to assign the non-sampled points in the clusters of the

sample, resulting to the linear behavior shown in the figure.

6 Related Work

A source of motivation for our work is the literature on
comparing and merging multiple rankings [9, 11]. Dwork
et al. [9] demonstrated that combining multiple rankings in
a meta-search engine for the Web yields improved results
and removes noise (spam). The intuition behind our work is
similar. By combining multiple clusterings we improve the
clustering quality, and remove noise (outliers).

The problem of clustering aggregation has been previ-
ously considered in the machine learning community, un-
der the name Clustering Ensemble and Consensus Cluster-
ing. Strehl and Ghosh [19] consider various formulations
for the problem, most of which reduce the problem to a
hyper-graph partitioning problem. In one of their formu-
lations they consider the same graph as in the correlation
clustering problem. The solution they propose is to com-
pute the best k-partition of the graph, which does not take
into account the penalty for merging two nodes that are far
apart. All of their formulations assume that the correct num-
ber of clusters is given as a parameter to the algorithm.

Fern and Brodley [12] apply the clustering aggregation
idea to a collection of soft clusterings they obtain by random
projections. They use an agglomerative algorithm similar to
ours, but again they do not penalize for merging dissimilar
nodes. Fred and Jain [14] propose to use a single linkage al-
gorithm to combine multiple runs of the k-means algorithm.
Dana Cristofor and Dan Simovici [7] observe the connec-
tion between clustering aggregation and clustering of cate-
gorical data. They propose information theoretic distance
measures, and they propose genetic algorithms for finding
the best aggregation solution. Boulis and Ostendorf [5] use
Linear Programming to discover a correspondence between
the labels of the individual clusterings and those of an “op-
timal” meta-clustering. Topchy et al [21] define clustering
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aggregation as a maximum likelihood estimation problem,
and they propose an EM algorithm for finding the consen-
sus clustering. Filkov and Skiena [13] consider the same
distance measure between clusterings as ours. They pro-
pose a simulating annealing algorithm for finding an aggre-
gate solution, and a local search algorithm similar to ours.
They consider the application of clustering aggregation to
the analysis of microarray data.

There is an extensive literature in the field of theoreti-
cal computer science for the problem of correlation clus-
tering. The problem was first defined by Bansal et al. [2].
In their definition, the input is a complete graph with +1
and -1 weights on the edges. The objective is to parti-
tion the nodes of the graph so as to minimize the number
of positive edges that are cut, and the number of negative
edges that are not cut. The best known approximation al-
gorithm for this problem is by Charikar et al. [6] who give
an LP-based algorithm that achieves a 4 approximation fac-
tor. When the edge weights are arbitrary, the problem is
equivalent to the multi-way cut, and thus there is a tight
O(log n)-approximation algorithm [8, 10]. If one consid-
ers the corresponding maximization problem, that is, max-
imize the agreements rather than minimize disagreements,
then the situation is much better. Even in the case of graphs
with arbitrary edge weights there is a 0.76-approximation
algorithm using semi-definite programming [6, 20].

7 Concluding remarks

In this paper we proposed a novel approach to cluster-
ing based on the concept of aggregation. Simply stated, the
idea is to cluster a set of objects by trying to find a clustering
that agrees as much as possible with a number of already-
existing clusterings. We motivated the problem by describ-
ing in detail various applications of clustering aggregation
including clustering categorical data, dealing with heteroge-
neous data, improving clustering robustness, and detecting
outliers. We formally defined the problem and we showed
its connection with the problem of correlation clustering.
For the problems of clustering aggregation and correlation
clustering we gave a number of algorithms, including a sam-
pling algorithm that allows us to handle large datasets with
no significance loss in the quality of the solutions. Finally,
we verifed the intuitive appeal of the proposed approach and
we studied the behavior of our algorithms with experiments
on real and synthetic datasets.
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