
Finding recurrent sources in sequences

Aristides Gionis
∗

Department of Computer Science
Stanford University

Stanford, CA, 94305, USA

gionis@cs.stanford.edu

Heikki Mannila
HIIT Basic Research Unit

Department of Computer Science
University of Helsinki

P.O. Box 26, Teollisuuskatu 23
FIN-00014 Helsinki, Finland

Heikki.Mannila@cs.helsinki.fi

ABSTRACT
Many genomic sequences and, more generally, (multivariate)
time series display tremendous variability. However, often it
is reasonable to assume that the sequence is actually gener-
ated by or assembled from a small number of sources, each
of which might contribute several segments to the sequence.
That is, there are h hidden sources such that the sequence
can be written as a concatenation of k > h pieces, each of
which stems from one of the h sources. We define this (k, h)-
segmentation problem and show that it is NP-hard in the
general case. We give approximation algorithms achieving
approximation ratios of 3 for the L1 error measure and

√
5

for the L2 error measure, and generalize the results to higher
dimensions. We give empirical results on real (chromosome
22) and artificial data showing that the methods work well
in practice.

Categories and Subject Descriptors
F.2.2 [Analysis of algorithms and problem complex-

ity]: Nonnumerical algorithms and problems—Computations
on discrete structures, Geometrical problems and computa-
tions; J.3 [Life and medical sciences]: Biology and ge-
netics

General Terms
Algorithms

1. INTRODUCTION
Many genomic sequences and, more generally, (multivari-

ate) time series display tremendous variability. In many
cases it is interesting to find out whether the sequence can

∗Supported by a Microsoft Research Fellowship. This work
was done while the author was visiting the HIIT Basic Re-
search Unit, Department of Computer Science, University
of Helsinki, Finland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RECOMB’03, April 10–13, 2003, Berlin, Germany.
Copyright 2003 ACM 1-58113-635-8/03/0004 ...$5.00.

be viewed as consisting of segments coming from a small
number of different sources. That is, we want to examine
whether there are h hidden sources such that the sequence
T can be written as a concatenation of k > h pieces each of
which can be viewed as coming from one of the h sources.

For genomic analyses, the segments might be viral or mi-
crobial inserts, stemming from a small number of possible
sources. For instance, Azad et al [2] try to identify a coarse–
grained description of the given DNA string in terms of a
smaller set of distinct domain labels. The biological hy-
pothesis behind this is that a mosaic organization of DNA
sequences could have originated from the insertion of frag-
ments of one genome (the parasite) inside another (the host).
For time series type of data, the segments would reflect the
generating process having h different states, with arbitrary
(but relatively rare) transitions between the states.

The segmentation problem for genome sequences and time
series has been discussed widely; see, e.g., [10, 3, 7, 9, 5, 16,
14, 15, 11, 4, 2]. For a wide variety of score functions, dy-
namic programming can be used to obtain the best segmen-
tation of an n-element sequence into k pieces in time O(n2k);
this idea goes back at least to Bellman [3] in 1961. The
problem with this approach is that the descriptions for each
segment are independent. That is, we get as many sources
as there are segments. In many applcations it makes more
sense to assume that the number of sources is (much) smaller
than the number of segments. A complex dynamic process
can have a small set of underlying states, and the number
of state transitions is far larger than the number of states.
Similarly, a genome can have an evolutionary structure with
only a few different sources, each source contributing several
segments.

Our problem is thus to find a good way of segmenting an
n-element sequence into k segments, each of which comes
from one of h different sources. We call this the (k, h)-
segmentation problem. The normal dynamic programming
approaches to sequence segmentation ignore the constraint
of having less sources than segments and solve the (k, k)-
segmentation problem. When h < k, the (k, h)-segmentation
problem cannot be solved using that method: the restric-
tion to h different sources means that decisions made early
in the sequence have an impact later, invalidating the op-
timality condition needed for dynamic programming. The
(k, h)-segmentation problem turns out to be algorithmically
quite interesting.

Formally, the (k, h)-segmentation problem is defined as
follows. Suppose we are given a sequence T = (t1, . . . , tn),

where ti ∈ Σ. A segmentation M of T is defined by k + 1
segment boundaries 1 = b1 < b2 < · · · < bk < bk+1 = n + 1,
yielding segments S1, . . . , Sk where Si = (tbi

, . . . , tbi+1 − 1).
Denote the possible sources (or states of the process) by Γ.
Given a source γ ∈ Γ and a segment Si, denote by P (Si | γ)
the likelihood that the sequence Si comes from source γ.

The problem is to find h sources γ1, . . . , γh, a decomposi-
tion of T into k segments S1, . . . , Sk, and for each segment
Si an assignment of a source γji

∈ {γ1, . . . , γh} such that

the total probability
� k

i=1 P (Si | γji
) is maximized.

The above formulation is in terms of an arbitrary likeli-
hood function. We mostly consider the case of sequence of
points from Rd and the problem of finding (k, k)-segmentations
for them. We next discuss how the two formulations are re-
lated. If the sequence consists of n points in Rd, we can take
Γ to be Rd, and say that the loglikelihood of an observation
ti stemming from source γ (a point in Rd) is proportional to
−||ti−γ||2. Then, given an interval [a, b], the loglikelihood of

the subsequence S[a, b] is proportional to − � b

i=a
||ti − γ||2.

Thus the best source for the interval is the one that max-
imizes the probability P (S[a, b] | γji

), or equivalently the

minimizer of the sum of squares error � b

i=a
||ti − γ||2. The

latter turns out to be the mean of the data points in the
interval S[a, b].

Denote by V ar(Si) the variance of segment Si, and by
|Si| the length (number of points) of Si. Then the (k, k)-
segmentation problem is equivalent to finding the k segments
such that the sum � k

i=1 |Si|V ar(Si) is minimized; the best
source for each segment is simply the mean of the segment,
and the error per point is the variance of the segment. In-
stead of the L2-metric, we can of course consider arbitrary
Lp-metrics. For each segment, the (k, k)-segmentation prob-
lem can use the source that minimizes the error, whereas in
the (k, h)-segmentation problem with h < k several seg-
ments have to use the same source.

While the (k, k)-segmentation problem has been consid-
ered often, to the best of our knowledge the problem of
(k, h)-segmentation has not been studied extensively. In
1989 Churchill [6] stated a related problem for the purpose
of partitioning genomic sequences into segments. In his for-
mulation he uses hidden Markov states to model different
compositional properties within each DNA segment, and his
solution uses the Viterbi algorithm to determine the most
probable sequence of states. More recently, Azad et al [2]
formulate a similar problem to (k, h)-segmentation but their
solution is based on greedy “split and merge” and it does
not provide any theoretical guarantee.

An alternative way to view the (k, h)-segmentation prob-
lem is as a clustering problem with added constraints: the
task is to cluster the points into h clusters, with the restric-
tion that along the dimension of the sequence the cluster
may change at most k − 1 times.

In this paper we study the (k, h)-segmentation problem
and apply it to several domains. First, we show that the
(k, h)-segmentation for sequences of points from Rd is NP-
hard for d > 1, both for the L1 and L2 metrics. For the
case d = 1, it is not known whether the problem is NP-hard
or not. Nevertheless, for d = 1 we give a 3-approximation
algorithms for the L1 error metric and a

√
5-approximation

algorithm for the L2 error metric. For general d, we get a
3 + ε approximation ratio for L1 and α + 2 for L2, where α
is the best approximation factor for the k-means clustering
problem.

These approximation algorithms are simple and easy to
implement, while the analysis is slightly complex. The meth-
ods are based on using instances of dynamic programming
for the polynomially solvable cases of the problem. The algo-
rithms can be applied to any a polynomial-time computable
likelihood function P (S | γ), as long as we can, given a
segment S from the sequence, find the source γ maximiz-
ing P (S | γ); the details of the approximation guarantees
depend on the exact form of the likelihood function.

We give empirical data both for artificial and for real se-
quences. The artificial data is generated from a process with
a small number of hidden states; even for 0-1 sequences, our
algorithms produce very good approximations of the hidden
states. A typical empirical approximation error is about 4%.

It seems to us that one of the main applications of the
(k, h)-segmentation problem is in genomic sequences. As an
example, we study the distribution of w-letter words (e.g.
w = 2, 3) in blocks of length 500 kb in the human genome.
That is, given the genome sequence, we look at each 500
kb block in it, and compute for each block the frequency
of each of the w-letter words over A, C, G, T. These word
frequencies then form our sequence of dimension 4w (16 or
64), and we search for recurrent states in this sequence. We
apply the Bayesian information criterion (BIC, see [17, 10])
to search for the values of k and h yielding the best segmen-
tation. In addition, we apply our segmentation algorithms
on the chromosome sequence that describes the densities of
SNPs and genes in each block. We also examine combina-
tions of both of the above densities giving to each an equal
weight. The results show that the methods provide useful
segmentations that can be applied in the search for large
scale structure in the genome (see Section 5.2).

The rest of this paper is organized as follows. In Sec-
tion 2 we define the (k, h)-segmentation problem formally,
give some basic observations, and show that the problem is
NP-hard in general. In Section 3 we give three algorithms
for the problem and describe the approximability results; the
proofs are in Section 4. Experimental results are described
in Section 5, and Section 6 is a short conclusion.

2. PRELIMINARIES
As noted in the introduction, our algorithms can be ap-

plied to finding optimal (k, h)-segmentations for any likeli-
hood function satisfying the following two mild conditions:
First, for every set of points coming from a single source we
should be able to compute the optimal source that maxi-
mizes the likelihood function. Second, the total likelihood
for a segmentation of the whole sequence should be an as-
sociative combination function (e.g. sum or product) of the
individual likelihoods on each segment.

For simplicity of notation, we consider in the sequel the
case of multidimensional real-valued sequences with the Lp

distances. Let T = (t1, . . . , tn) be a sequence with n data
points from Rd. The Lp distance between any two data
points ti and tj of the sequence is defined as

dp(ti, tj) = (
d�

k=1

|tik − tjk|p)
1
p

where (ti1, . . . , tid) and (tj1, . . . , tjd) are the coordinates of
the two d-dimensional points ti and tj . The most commonly
used distances are the L1 (Manhattan), the L2 (Euclidean),
and the L∞ (L-infinity). In the one dimension all of the

above distances are simply |ti − tj |. In the rest of the paper
when the subscript p is ommited the Euclidean distance is
implied, i.e. d(ti, tj) = d2(ti, tj), but most of our algorithms
can be easily modified so that other distance functions can
also be used.

A k-segmentation M of a sequence T is defined by k + 1
indices {b1, b2, . . . , bk, bk+1} that divides T into k segments,
i.e., with 1 = b1 < b2 < . . . < bk < bk+1 = n + 1. We write
M ∈ Segmk(T) to denote that M is a k-segmentation of T .
A k-segmentation M is also described by the sequence of
segments to which it partitions the original sequence, that
is, M = (S1, . . . , Sk), where Si = (tbi

, . . . , tbi+1
− 1) for all

i = 1, . . . , k. We write S ∈ M for a segment in segmentation
M, and t ∈ S for a point in segment S.

Given the original sequence T , our goal is to find a seg-
mentation M such that each of the segments S ∈ M is
homogeneous with respect to an error measure. Two nat-
ural choices for error measures within a segment S are the
1-error measure:

E1(S) = min
x∈Rd

�
t∈S

d(t, x)

and the 2-error measure:

E2(S) = min
x∈Rd

� �
t∈S

d(t, x)2

Minimizing these error measures can also be obtained by
representing the segment S with a single representative t̄S ,
chosen so that it minimizes the error measure. In other
words, E1(S) = �

t∈S
d(t, t̄S) and E2

2(S) = �
t∈S

d(t, t̄S)2.
It is easy to see that for E1(S), the representative t̄S will
be the median of the points in S, while for E2(S) it will be
the mean of the points in S. We write Ep(·) when we don’t
want to distinguish between E1(·) and E2(·). The traditional
sequence segmentation problem can now be formalized as
follows.

Problem 1 ((k, k)-segmentationp). For a sequence T ,
a k-segmentation M of T , and p = 1, 2, we define the p-error
of a segmentation M to be

Ep(T,M) = � �
S∈M

Ep
p(S) � 1

p

= � �
S∈M

�
t∈S

d(t, t̄S)p � 1
p

The task is to find the segmentation M that minimizes the
above error measure. The minimum error is denoted by
Segp(T, k), i.e.

Segp(T, k) = min
M∈Segmk(T)

Ep(T,M)

This problem can, of course, be solved in polynomial time
using dynamic programming as shown in 1961 by Bellman [3].

As noted in the introduction, the drawback in this formu-
lation is that the segments are completely independent: we
have no way of preferring solutions that would use only a few
types of segments. That is, in (k, k)-segmentationp, the rep-
resentative t̄S can take a distinct value for each segment S.
We would like to restrict the segment representatives to use
at most h different values. Given a set of L = {l1, . . . , lh}
of h values and a segmentation M, the minimal error for
segment S ∈ M is the li that minimizes the error measure,
i.e.,

Ep
p(S|L) = min

l∈L

�
t∈S

d(t, l)p.

The minimizer of the error measure in the set L for a seg-
ment S is denoted by lS. The problem of finding recurrent
states in sequences is formalized as follows.

Problem 2 ((k, h)-segmentationp). Given a sequence
T , a k-segmentation M of T , a set L of h values, and
p = 1, 2, the p-error of the segmentation M with respect
to L is

Ep(T,M, L) = � �
S∈M

Ep
p(S|L) � 1

p

= � �
S∈M

�
t∈S

d(t, lS)p � 1
p

The task is to find the segmentation M and the set of val-
ues L that minimizes Ep(T,M, L). The minimum error
achieved is denoted by Segp(T, k, h), i.e.

Segp(T, k, h) = min
M∈Segmk(T), L:|L|=h

Ep(T,M, L)

The (k, k)-segmentationp problem is a special case of (k, h)-
segmentationp, where the value of h is left unconstrained.
This means the following.

Observation 1. For a sequence T and any numbers k
and h we have Segp(T, k) ≤ Segp(T, k, h).

Also notice that for fixed h the value of Segp(T, k, h) de-
creases as k increases. Since the largest value of k is n, we
get the following

Observation 2. For a sequence T of size n and any k
and h we have Segp(T, n, h) ≤ Segp(T, k, h).

The case of k = n, in Observation 2, can be viewed as ignor-
ing the constraint that some consecutive points in the se-
quence should be represented by the same value. Thus, the
(n, h)-segmentationp problem is the well-studied clustering
problem. For p = 1 it is the Euclidean k-median problem,
and for p = 2 it is k-means problem of finding the k points
such that the sum of distances to the closest point is mini-
mized.1 Both of these problems can be solved in polynomial
time for 1-dimensional data [13], and both are NP–hard for
dimensions d ≥ 2 [12].

Lemma 1. For p = 1, 2, and dimension d ≥ 2, the prob-
lem (k, h)-segmentationp is NP–hard.

Proof. For p = 1 and p = 2, the k-median and k-
means problems, respectively, are special cases of (k, h)-
segmentationp with k = n. 2

3. ALGORITHMS
In this section we describe three algorithms for solving the

(k, h)-segmentation problem. The algorithms are based on
solving the polynomial sub-cases and combining the results
in different ways.

3.1 Segments2Levels algorithm
The first of our algorithms for the (k, h)-segmentation

problem is called Segments2Levels. The algorithm is as
follows. First solve the (k, k)-segmentation problem to ob-
tain a k-segmentation M. Then solve the (n, h)-segmentation

1Note that “k-means” is often used for one approximate
algorithm for this problem.

problem to obtain a set L of h level values. Then assign each
segment S ∈ M to the level in L which is closest to t̄S.

We show in Section 4 that this simple algorithm provides
a 3-approximation to the (k, h)-segmentation problem for
p = 1 and for p = 2, for dimension 1. For higher dimensions,
the approximation guarantees are 3 + ε for p = 1, and α + 2
for p = 2, where α is the best approximation factor for the
k-means problem.

The algorithm runs in time O(n2(k + h)), as the running
time of the dynamic programming method is quadratic in
the number of points and linear in the number of segments.

3.2 ClusterSegments algorithm
The next algorithm, called ClusterSegments, yields ap-

proximation rations 5 and
√

5, for the 1-error and 2-error
measures, respectively.

The first step of the algorithm is the same with the first
step of Segments2Levels; it solves (k, k)-segmentation and
decides about the segments of the solution. Then, each seg-
ment S in the optimal segmentation of (k, k)-segmentation
is represented with the single value t̄S and weight |S|. A
set of h levels L is produced by clustering those k weighted
points into h clusters. The final solution is produced by
assigning each segment S to the level lS ∈ L which is the
closest to t̄S among all levels in L. The running time of the
method is again O(n2(k + h)).

3.3 Iterative algorithm
Our third algorithm is inspired by the EM algorithm and

it is based on the following observations.

1. If we know the set L of levels that are to be used, then
we can find the k optimal segments. This follows from
simple application of dynamic programming. This step
corresponds to the E-step of the EM algorithm.

2. Given an existing segmentation we can readjust the
values of the levels and possibly improve the value of
the solution. This is done as the M-step of the EM
algorithm: for each level we obtain a possibly better
value by computing the mean or the median (depend-
ing on the error that we are optimizing for) of all the
points in the segments that are assigned to this level.

The Iterative algorithm uses these observations. It starts
from an initial segmentation obtained by, e.g., either of the
previous algorithms. Then, given the current levels, the op-
timal segmentation for those levels is found using the above
observation. After that, a new set of h levels is computed
by using the second observation. These two steps are iter-
ated until the error does not decrease any more. We denote
by Iterative(SL) the version that starts with the output
of Segments2Levels, and by Iterative(CS) the version
that starts with the output of ClusterSegments.

The Iterative algorithm produces at least as good ap-
proximations as the previous two methods. The running
time of the algorithm is O(In2(k + h)), where I is the num-
ber of iterations. In most of our experiments the initial so-
lutions provided by Segments2Levels and ClusterSeg-
ments were very good, so the number of iterations remained
below 3 or 4.

4. APPROXIMATION GUARANTEES
In this section we prove the approximation guarantees for

the Segments2Levels and ClusterSegments algorithms.
For the Iterative algorithm we only know that it never is
worse that the other two methods. The empirical results in
the next section show that in practice the algorithms work
far better than what the worst-case bounds suggest.

4.1 Analysis of the Segments2Levels algorithm

Theorem 1. Consider a 1-dimensional sequence T and
integers k and h. Let Opt1 = Seg1(T, k, h) be the value of
the optimal segmentation for the 1-error measure. Denote
by SL1(T, k, h) be the value of the solution provided by the
algorithm Segments2Levels. Then SL1(T, k, h) ≤ 3·Opt1.

Proof. Recall from the description of the algorithm in
Section 3.1, that there are two initial steps. The first step
is to solve the (n, h)-segmentation1 problem. Since we are
in the 1-dimensional case, this can be solved in polynomial
time using dynamic programming. Thus we obtain a set of
levels L for which we have Seg1(T, n, h) ≤ Opt1. The second
step is to solve the (k, k)-segmentation1, again by dynamic
programming. So, we obtain a k-segmentation M, for which
Seg1(T, k) ≤ Opt1.

Now consider a data point t of the sequence. Let S be the
segment in M which point t belongs to, and let lS ∈ L be the
level which segment S is assigned to by Segments2Levels.
Also define lt ∈ L to be the value which point t is assigned
to by the the solution of (n, h)-segmentation1.

The error that point t contributes to the total error is
d(t, lS) and by triangle inequality

d(t, lS) ≤ d(t, t̄S) + d(t̄S, lS)

where, as before, t̄S is the median of all points in segment S.
However, since lS is the closest to t̄S, among all levels in L,
we have

d(t̄S, lS) ≤ d(t̄S, lt)

and with a second application of the triangle inequality

d(t̄S, lt) ≤ d(t̄S, t) + d(t, lt)

Combining the previous inequalities gives

d(t, lS) ≤ 2d(t, t̄S) + d(t, lt)

and summing over all points in T we obtain the desired
result:

SL1(T, k, h)

=
�
t∈T

d(t, lS)

≤ 2 ·
�
t∈T

d(t, t̄S) +
�
t∈T

d(t, lt)

≤ 2 · Seg1(T, k) + Seg1(T, n, h) ≤ 3 · Opt1.

2

Theorem 2. Let T be a 1-dimensional sequence and let k
and h be integers. Let Opt2 = Seg2(T, k, h) be the value of
the optimal segmentation for (k, h)-segmentation2 problem
for the p = 2 error measure. Let SL2(T, k, h) be the value of
the solution provided by the algorithm Segments2Levels.
Then SL2(T, k, h) ≤ 3 · Opt2.

Proof. The proof is very similar to the one for the 1-
error measure. Again in the 1-dimensional case the problem
(n, h)-segmentation2 can be solved in polynomial time, so
Seg2(T, n, h) ≤ Opt2. Also by solving (k, k)-segmentation2,
we obtain segmentation M for which Seg2(T, k) ≤ Opt2.

Using the same notation as in Theorem 1 we have that
the error that a single point t contributes to the square of
the total error is

d(t, lS)2 ≤ (d(t, t̄S) + d(t̄S, lS))2

Combining with d(t̄S, lS) ≤ d(t̄S, t) + d(t, lt) we get

d(t, lS)2 ≤ 4d(t, t̄S)2 + d(t, lt)
2 + 4d(t, t̄S)d(t, lt)

and summing over all points in T we obtain

SL2(T, k, h)2

=
�
t∈T

d(t, lS)2

≤ 4
�
t∈T

d(t, t̄S)2 +
�
t∈T

d(t, lt)
2 + 4

�
t∈T

d(t, t̄S)d(t, lt)

≤ 4
�
t∈T

d(t, t̄S)2 +
�
t∈T

d(t, lt)
2

+4

� �
t∈T

d(t, t̄S)2
� �

t∈T

d(t, lt)2 (by Cauchy-Schwarz)

≤ 4 · Seg2(T, k)2 + Seg2(T, n, h)2

+4 · Seg2(T, k) · Seg2(T, n, h)

= 9 · Opt22

which, by taking square roots, provides the claimed approx-
imation ratio. 2

4.1.1 Higher dimensions
The only place that the 1-dimensionality is used in The-

orems 1 and 2 is in solving exactly the clustering prob-
lem (n, h)-segmentationp, and claiming that Segp(T, n, h) ≤
Optp. In higher dimensions, as we already mentioned, those
clustering problems become NP–hard. However, we can ap-
proximate the solutions by polynomial algorithms. The k-
median problem (i.e., (n, h)-segmentation1) admits a PTAS [1],
so we can find a set of levels L for which Seg1(T, n, h) ≤
(1 + ε)Opt1. Plugging this in the proof of Theorem 1 we
obtain an approximation ratio of 3 + ε for the 1-error mea-
sure. Similarly, k-means can be approximated in polynomial
time. Calling α the best approximation ratio for k-means,
and using that in the proof of Theorem 2 we obtain an ap-
proximation ratio of α + 2 for the 2-error measure. The
current α is 9 + ε by Kanungo et al [8], yielding a factor of
11+ ε to our problem. The clustering algorithms (for (n, h)-
segmentation) used to obtain these approximability results
for higher dimensions might not be very efficient in practice.

4.2 Analysis of the ClusterSegments algorithm
For analyzing the performance of the ClusterSegments

algorithm we need the following lemmas. The first is a
weaker version of the triangle inequality in the case of the
square of distances between points.

Lemma 2 (Double triangle inequality). For points
x, y, and z we have

d(x, y)2 ≤ 2 · d(x, z)2 + 2 · d(z, y)2

Proof. The lemma can be shown with a simple applica-
tion of the triangle inequality, i.e.,

d(x, y)2 ≤ (d(x, z) + d(z, y))2

= d(x, z)2 + d(z, y)2 + 2 · d(x, z)d(z, y)

≤ 2 · d(x, z)2 + 2 · d(z, y)2

since 2 · d(x, z)d(z, y) ≤ d(x, z)2 + d(z, y)2. 2

The next lemma is a bias-variance result, which we state
and prove for completeness.

Lemma 3. Let {t1, . . . , tm} be a set of m points and let
t̄ be their mean, i.e. the minimizer of the 2-error measure.
For any point x it is true that

m · d(t̄, x)2 ≤
m�

i=1

d(ti, x)2 = m · d(t̄, x)2 +

m�
i=1

d(ti, t̄)
2

Proof. We will only show the equality part of the lemma,
since this implies the inequality, as well. For simplicity
we will assume that the points are one-dimensional, i.e.
d(x, y) = |x − y|. The extension to the multidimensional
case can be done by applying the equality in each coordi-
nate separately and summing in all coordinates. By using
the definition of the mean � m

i=1 ti = mt̄, we have

m(t̄ − x)2 +
m�

i=1

(ti − t̄)2

= mt̄2 + mx2 − 2mxt̄ +

m�
i=1

t2i + mt̄2 − 2mt̄

m�
i=1

ti

= mx2 − 2mxt̄ +

m�
i=1

t2i

=
m�

i=1

(ti − x)2

2

Now we show that the solution found by ClusterSeg-
ments is within a factor of

√
5 of the optimal solution for

the 2-error measure. Using a similar line of arguments, one
can show that for the 1-error the approximation ratio of
ClusterSegments is 5. Since we have already shown a
ratio of 3 for that case using the Segments2Levels algo-
rithm, we omit the analysis.

Theorem 3. For a sequence T , numbers k and h, and the
2-error measure, let Opt2 = Seg2(T, k, h) be the value of the
optimal segmentation for (k, h)-segmentation2 . If CS2(T, k, h)
is the value of the solution provided by the algorithm Clus-
terSegments, then CS2(T, k, h) ≤

√
5 · Opt2.

Proof. By solving (k, k)-segmentation2 we obtain a seg-
mentation M for which Seg2(T, k) ≤ Opt2. Let L be the set
of h points found by clustering the k weighted points t̄S, for
S ∈ M. Let lS be the cluster center point which segment S
is assigned to.

Now, the error contributed by a specific segment S to
CS2(T, k, h)2 is � t∈S d(t, lS)2. Summing over all segments,

and applying Lemma 3 we obtain

CS2(T, k, h)2

=
�

S∈M

�
t∈S

d(t, lS)2

=
�

S∈M

� |S| · d(t̄S, lS)2 +
�
t∈S

d(t, t̄S)2 �
=

�
S∈M

|S| · d(t̄S, lS)2 + Seg2(T, k)2

≤
�

S∈M

|S| · d(t̄S, lS)2 + Opt22

The next step is to bound the term �
S∈M |S| · d(t̄S, lS)2.

Consider the set of optimal level points M for the original
problem. For each segment S, let µS be the point in M
which is the closest to t̄S. For the 1-dimensional case, the
clustering of the k weighted points can be done optimally,
by dynamic programming. So by claiming optimality for L
we get

�
S∈M

|S| · d(t̄S, lS)2 ≤
�

S∈M

|S| · d(t̄S, µS)2

Assume that the optimal segmentation partitions a segment
S of M into r subsegments Sj , each of them having size sj

and mean t̄j . Also assume that the optimal solution assigns
each of those segments at a level µj ∈ M , for j = 1, . . . , r.
Since µS is the closest to t̄S, we have

|S| · d(t̄S, µS)2

≤
r�

j=1

sj · d(t̄S, µj)
2

≤ 2 � r�
j=1

sj · d(t̄S, t̄j)
2 +

r�
j=1

sj · d(t̄j , µj)
2 � (by Lemma 2)

≤ 2

r�
j=1

�
t∈Sj

d(t, t̄S)2 + 2

r�
j=1

�
t∈Sj

d(t, µj)
2(by Lemma 3)

= 2
�
t∈S

d(t, t̄S)2 + 2
�
t∈S

d(t, µt)
2

where, by µt we denote the level to which the point t is
assigned by the optimal solution. Summing over all seg-
ments in M, it is clear that the term �

S∈M |S| · d(t̄S, µS)2

is bounded by 4 · Opt22. Combining the above inequalities
we have CS2(T, k, h)2 ≤ 5 · Opt22, which yields the desired
bound. 2

Similarly with the Segments2Levels algorithm, the proof
can be adapted for higher dimensions giving ratios of 5 + ε
for p = 1, and

√
4α2 + 1 for p = 2. As before, α is the best

approximation factor for the k-means problem.
Two points should be discussed here regarding the ex-

tension of the algorithms in higher dimensions. First, one
should note that ClusterSegments achieves a better ap-
proximation ratio in the one dimension where α = 1, while
Segments2Levels is better in higher dimensions, and in
general as long as α ≥ 1.86.

The second observation is that the clustering subroutine
used by the ClusterSegments algorithm takes as input
only k points, instead of n. This means that for small val-
ues of k, say small constants, one could possibly afford to use

a brute force algorithm in order to find the optimal cluster-
ing. This would require time exponential in k (still constant
however), but the approximation ratio remains

√
5 indepen-

dently of the dimension.

5. EXPERIMENTAL EVALUATION

5.1 Experiments on synthetic data
To test the performance of the methods we generated ar-

tificial data sets that display the recurrent state behavior
that is of interest to us.

The data sets were generated as follows. First we created
a Markov model with 5 states with transition probabilities
between the states chosen randomly from in the interval
[0, 1

500
], implying that the average length of stay in a given

state is about 250 steps. For the 0-1 data, each state i had a
probability pi of emitting a 1. We simulated the state tran-
sitions and emissions for n=5K, 10K, 15K and 20K steps.

Given each point in the sequence, we know what the gen-
erating probability p of a 1 has been at that point. When
applying the algorithms for (k, h)-segmentation described in
the previous sections, we obtain an estimate of the gener-
ated probabilities2. We then computed the average error
between the true value of p and the estimate produced by
the algorithms.

The other artificial data set was generated by having a
real-valued hidden source x at each state. When the gen-
erating process was at that state, the generated point was
chosen randomly from the normal distribution with mean x
and variance σ2, with σ varying from 0.02 to 0.4.

The results for these two sets of artificial data are shown
in Figures 1 and 2, respectively. One can see that the
error is typically very low, below 4% for the best algo-
rithms, ClusterSegments and Iterative(CS). The Seg-
ments2Levels and the Iterative(SL) algorithms perform
worse. This is only to be expected, as for 0-1 data the clus-
tering algorithm provides only two sources. The accuracy of
ClusterSegments and Iterative(CS) solution improves
nicely when the size of the sequence grows. For normally
distributed data, the error remains very small even for large
variance. The number of states used does not have to be
exactly the correct one, as seen in Figure 3. Note that
one could also reconstruct the transition probabilities for
sequences that are long enough. We obtained similar results
for the case of 10 underlying states.

5.2 Experiments on genome data
We used the sliding window technique to collect statistics

from the human genome sequence, in particular from chro-
mosome 22. Our window size was 500 kb, and the sliding
step was set to 50 kb. The known area of the chromosome is
about 35 Mb, so our windowing parameters yield sequences
of about 700 points. Within each window we compute the
frequency of each of the w-letter words over A, C, G, T, for
w = 2 and 3. Therefore, we obtain sequences of dimensions
16 and 64. The same windowing technique was used on data
indicating the positions of SNPs and genes on chromosome
22. For each window we computed the frequency of SNPs,

2Note that given a segment S = (t1, . . . , tm) containing m1

1s and m0 = m−m1 0s, the p that maximizes the Bernoulli
likelihood

�
i pti(1 − p)1−ti is m1/m, i.e., the p that mini-

mizes the L2 distance.

0.5 1 1.5 2

x 10
4

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

E
rr

or

Timeseries length

Error on 0−1 data, 5 states

Segments−2−Levels
Iterative−1
Cluster−Segments
Iterative−2

Figure 1: Average error of the estimated level from

the generating level for artificial 0-1 data as a func-

tion of the length of the input sequence.

the frequency of genes, and the combined frequency (2-d
points).

For the sequences we described above, we used our method
to search for segmentations with recurrent states. We ap-
plied the Bayesian information criterion (see [17, 10]) to
search for the values of k and h yielding the best segmen-
tation. Our results are shown in Figure 4. The results in-
dicate that the (k, h)-segmentation methods produce intu-
itively appealing results; the BIC-optimal number of seg-
ments is reasonably small and the number of sources is
clearly smaller. The results can be viewed as showing that,
with respect to the statistics used, there are segments in the
chromosome that show the same characteristics. The statis-
tics used for segmenting the sequences could, of course, be
chosen differently; the presented results are just examples.
We are, however, exploring the relationship of the obtained
segments with, e.g., the human-mouse synteny maps.

6. CONCLUSIONS
We have introduced the (k, h)-segmentation problem, where

the task is to find a segmentation of a sequence into k seg-
ments stemming from h different sources. The problem is
NP-complete in the general case. We gave simple approx-
imation algorithms for the problem, proved bounds on the
approximation quality, and gave empirical results on real
and artificial data.

Several open problems remain. On the theoretical side
the foremost is finding out whether the (k, h)-segmentation
problem is NP-hard for 1-dimensional data. The analysis
of the approximation qualities seem to be fairly tight, but
it would be interesting to know whether the results can be
improved.

In this paper we gave only simple examples of the appli-
cations of the method. For genomic analyses the main task
is to select good characteristics over which the segmentation
problem is then solved. The ones we used, gene and SNP
density and distribution of short words, are just examples:

0.02 0.05 0.1 0.2 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

E
rr

or

Variance

Error on Normal data, 5 states

Segments−2−Levels
Iterative−1
Cluster−Segments
Iterative−2

Figure 2: Average error of the estimated level from

the generating level for normally distributed data as

a function of the variance in the generated data.

basically any characteristic of small blocks of sequences can
be used. An interesting issue is measuring the correlation
between two segmentations.

7. REFERENCES
[1] S. Arora, P. Raghavan, and S. Rao. Approximation

schemes for euclidean k -medians and related
problems. In ACM Symposium on Theory of
Computing, pages 106 – 113, 1998.

[2] R. K. Azad, J. S. Rao, W. Li, and R. Ramaswamy.
Simplifying the mosaic description of DNA sequences.
Physical Review E, 66, article 031913, 2002.

[3] R. Bellman. On the approximation of curves by line
segments using dynamic programming. Commun.
ACM, 4(6), 1961.

[4] K. Bennett. Determination of the number of zones in
a biostratigraphical sequence. New Phytol.,
132:155–170, 1996.

[5] A. Cantoni. Optimal curve fitting with piecewise
linear functions. IEEE Transactions on Computers,
C-20(1):59–67, 1971.

[6] G. A. Churchill. Stochastic models for heterogeneous
DNA sequences. Bulletin of Mathematical Biology,
51:79 – 94, 1989.

[7] J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmäki,
and H. T. Toivonen. Time series segmentation for
context recognition in mobile devices. In The 2001
IEEE International Conference on Data Mining
(ICDM’01), pages 203 – 210, 2001.

[8] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko,
R.Silverman, and A. Wu. A local search
approximation algorithm for k-means clustering. In
Proceedings of the 18th Annual Symposium on
Computational Geometry, pages 10 – 18, 2002.

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

E
rr

or

number of states (h)

Error on Normal data, 5 states

variance = 0.02
variance = 0.1
variance = 0.4

Figure 3: Average error of the estimated level from

the generating level for normally distributed data

as a function of the number h of states used by the

algorithm.

[9] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online
algorithm for segmenting time series. In IEEE
International Conference on Data Mining, pages
289 – 296, 2001.

[10] W. Li. DNA segmentation as a model selection
process. In RECOMB 2001, pages 204 – 210, 2001.

[11] J. Liu and C. Lawrence. Bayesian inference on
biopolymer models. Bioinformatics, 15(1):38–52, 1999.

[12] N. Megiddo and K. J. Supowit. On the complexity of
some common geometric location problems. SIAM
Journal on Computing, 13(1):182–196, 1984.

[13] N. Megiddo, E. Zemel, and S. L. Hakimi. The
maximum coverage location problem. SIAM Journal
on Algebraic and Discrete Methods, 4:253–261, 1983.

[14] A. Pavlicek, J. Paces, O. Clay, and G. Bernardi. A
compact view of isochores in the draft human genome
sequence. FEBS Letters, 511:165–169, 2002.

[15] V. Ramensky, V. Makeev, M. Roytberg, and
V. Tumanyan. DNA segmentation through the
bayesian approach. Journal of Computational Biology,
7(1/2):215–231, 2000.

[16] M. Salmenkivi, J. Kere, and H. Mannila. Genome
segmentation using piecewise constant intensity
models and reversible jump MCMC. In European
Conference on Computational Biology (ECCB2003),
2003. To appear.

[17] G. Schwarz. Estimating the dimension of a model. The
Annals of Statistics, 7(2):461 – 464, 1978.

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
7

0 1 2 3 131 4 0 1 3 1 0 1 2 1 2 1 4 0 1 3Gene

frequency

k=22, h=5

0 1 0 1 2 3 0 3 0 3 0 3SNP

frequency

k=12, h=4

5 0 2 3 47671434 3 5 0 3 0 3 0 3 1 3 1 3 0Gene/SNP

frequency

k=25, h=8

212 6 07 5 6 0 6 2 6 4 2 4 0 4 0 5 3 0 6 75 72−word

frequency

k=26, h=8

212 3 46 0 7 0 7 2 3 5 2 5 4 5 0 6 4 7 60 63−word

frequency

k=24, h=8

Position on Chromosome 22

Figure 4: BIC-optimal (k, h)-segmentations for se-

quences of frequencies of genes, SNPs, combined

genes and SNPs, 2-words, and 3-words. Each se-

quence has about 700 points; the dimensions are 1,

1, 2, 16, and 64, respectively. The numbers labeling

each segment indicate the recurrent states.

