
Radix Sort

The Ω(n logn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 3.10: CountingSort(R)
Input: (Multi)set R = {k1, k2, . . . kn} of integers from the range [0..σ).
Output: R in nondecreasing order in array J[0..n).

(1) for i← 0 to σ − 1 do C[i]← 0
(2) for i← 1 to n do C[ki]← C[ki] + 1
(3) sum← 0
(4) for i← 0 to σ − 1 do // cumulative sums
(5) tmp← C[i]; C[i]← sum; sum← sum+ tmp
(6) for i← 1 to n do // distribute
(7) J[C[ki]]← ki; C[ki]← C[ki] + 1
(8) return J

• The time complexity is O(n+ σ).

• Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.

93

Similarly, the Ω(DP (R) + n logn) lower bound does not apply to string
sorting algorithms that use stronger operations than symbol comparisons.
Radix sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm (more on this in
the exercises).

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).

94

The LSD radix sort algorithm is very simple.

Algorithm 3.11: LSDRadixSort(R)

Input: Set R = {S1, S2, . . . , Sn} of strings of length m over the alphabet [0..σ).
Output: R in increasing lexicographical order.

(1) for `← m− 1 to 0 do CountingSort(R,`)
(2) return R

• CountingSort(R,`) sorts the strings in R by the symbols at position `
using counting sort (with ki is replaced by Si[`]). The time complexity is
O(|R|+ σ).

• The stability of counting sort is essential.

Example 3.12: R = {cat, him, ham, bat}.

cat
him
ham
bat

=⇒

hi m
ha m
ca t
ba t

=⇒

h a m
c a t
b a t
h i m

=⇒

b at
c at
h am
h im

95

The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 3.13: LSD radix sort sorts a set R of strings over the alphabet
[0..σ) in O(||R||+mσ) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in R.

• The weakness of LSD radix sort is that it uses Ω(||R||) time even when
DP (R) is much smaller than ||R||.

• It is best suited for sorting short strings and integers.

96

MSD radix sort resembles string quicksort but partitions the strings into σ
parts instead of three parts.

Example 3.14: MSD radix sort partitioning.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

97

Algorithm 3.15: MSDRadixSort(R, `)
Input: Set R = {S1, S2, . . . , Sn} of strings over the alphabet [0..σ)

and the length ` of their common prefix.
Output: R in increasing lexicographical order.

(1) if |R| < σ then return StringQuicksort(R, `)
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) (R0,R1, . . . ,Rσ−1)← CountingSort(R, `)
(4) for i← 0 to σ − 1 do Ri ←MSDRadixSort(Ri, `+ 1)
(5) return R⊥ · R0 · R1 · · ·Rσ−1

• Here CountingSort(R,`) not only sorts but also returns the partitioning
based on symbols at position `. The time complexity is still O(|R|+ σ).

• The recursive calls eventually lead to a large number of very small sets,
but counting sort needs Ω(σ) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.

98

Theorem 3.16: MSD radix sort sorts a set R of n strings over the
alphabet [0..σ) in O(DP (R) + n logσ) time.

Proof. Consider a call processing a subset of size k ≥ σ:

• The time excluding the recursive call but including the call to counting
sort is O(k + σ) = O(k). The k symbols accessed here will not be
accessed again.

• The algorithm does not access any symbols outside the distinguishing
prefixes. Thus the total time spent in this kind of calls is O(DP (R)).

This still leaves the time spent in the calls to string quicksort. The calls are
for sets of size smaller than σ and no string is included two calls. Therefore,
the total time over all calls is O(DP (R) + n logσ).

�

• There exists a more complicated variant of MSD radix sort with time
complexity O(DP (R) + σ).

• Ω(DP (R)) is a lower bound for any algorithm that must access symbols
one at a time.

• In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.

99

String Mergesort

Standard comparison based sorting algorithms are not optimal for sorting
strings because of an imbalance between effort and result in a string
comparison: it can take a lot of time but the result is only a bit or a trit of
useful information.

String quicksort solves this problem by using symbol comparisons where the
constant time is in balance with the information value of the result.

String mergesort takes the opposite approach. It replaces a standard string
comparison with the operation LcpCompare(A,B, k):

• The return value is the pair (x, `), where x ∈ {<,=, >} indicates the
order, and ` is the length of the longest common prefix (lcp) of strings
A and B, denoted by lcp(A,B).

• The input value k is the length of a known common prefix, i.e., a lower
bound on lcp(A,B). The comparison can skip the first k characters.

Any extra time spent in the comparison is balanced by the extra information
obtained in the form of the lcp value.

100

The following result show how we can use the information from past
comparisons to obtain a lower bound or even the exact value for an lcp.

Lemma 3.17: Let A, B and C be strings.

(a) lcp(A,C) ≥ min{lcp(A,B), lcp(B,C)}.

(b) If A ≤ B ≤ C, then lcp(A,C) = min{lcp(A,B), lcp(B,C)}.

Proof. Assume ` = lcp(A,B) ≤ lcp(B,C). The opposite case
lcp(A,B) ≥ lcp(B,C) is symmetric.

(a) Now A[0..`) = B[0..`) = C[0..`) and thus lcp(A,C) ≥ `.

(b) Either |A| = ` or A[`] < B[`] ≤ C[`]. In either case, lcp(A,C) = `.

�

101

It can also be possible to determine the order of two strings without
comparing them directly.

Lemma 3.18: Let A ≤ B,B′ ≤ C be strings.

(a) If lcp(A,B) > lcp(A,B′), then B < B′.

(b) If lcp(B,C) > lcp(B′, C), then B > B′.

Proof. We show (a); (b) is symmetric. Assume to the contrary that B ≥ B′.
Then by Lemma 3.17, lcp(A,B) = min{lcp(A,B′), lcp(B′, B)} ≤ lcp(A,B′),
which is a contradiction. �

102

String mergesort has the same structure as the standard mergesort: sort the
first half and the second half separately, and then merge the results.

Algorithm 3.19: StringMergesort(R)
Input: Set R = {S1, S2, . . . , Sn} of strings.
Output: R sorted and augmented with lcp information.

(1) if |R| = 1 then return {(S1,0)}
(2) k ← bn/2c
(3) P ← StringMergesort({S1, S2, . . . , Sk})
(4) Q ← StringMergesort({Sk+1, Sk+2, . . . , Sn})
(5) return StringMerge(P,Q)

The output is of the form

{(T1, `1), (T2, `2), . . . , (Tn, `n)}
where `i = lcp(Ti, Ti−1) for i > 1 and `1 = 0.

In other words, we get not only the order of the strings but also a lot of
information about their common prefixes. The procedure StringMerge uses
this information effectively.

103

Algorithm 3.20: StringMerge(P,Q)
Input: Sequences P =

(
(S1, k1), . . . , (Sm, km)

)
and Q =

(
(T1, `1), . . . , (Tn, `n)

)
Output: Merged sequence R

(1) R← ∅; i← 1; j ← 1
(2) while i ≤ m and j ≤ n do
(3) if ki > `j then append (Si, ki) to R; i← i+ 1
(4) else if `j > ki then append (Tj, `j) to R; j ← j + 1
(5) else // ki = `j
(6) (x, h)← LcpCompare(Si, Tj, ki)
(7) if x = ”<” then
(8) append (Si, ki) to R; i← i+ 1
(9) `j ← h

(10) else
(11) append (TJ , `j) to R; j ← j + 1
(12) ki ← h
(13) while i ≤ m do append (Si, ki) to R; i← i+ 1
(14) while j ≤ n do append (TJ , `j) to R; j ← j + 1
(15) return R

104

Lemma 3.21: StringMerge performs the merging correctly.

Proof. We will show that the following invariant holds at the beginning of
each round in the loop on lines (2)–(12):

Let X be the last string appended to R (or ε if R = ∅). Then
ki = lcp(X,Si) and `j = lcp(X,Tj).

The invariant is clearly true in the beginning. We will show that the invariant
is maintained and the smaller string is chosen in each round of the loop.

• If ki > `j, then lcp(X,Si) > lcp(X,Tj) and thus

– Si < Tj by Lemma 3.18.

– lcp(Si, Tj) = lcp(X,Tj) because by Lemma 3.17
lcp(X,Tj) = min{lcp(X,Si), lcp(Si, Tj)}.

Hence, the algorithm chooses the smaller string and maintains the
invariant. The case `j > ki is symmetric.

• If ki = `j, then clearly lcp(Si, Tj) ≥ ki and the call to LcpCompare is safe,
and the smaller string is chosen. The update `j ← h or ki ← h maintains
the invariant. �

105

Theorem 3.22: String mergesort sorts a set R of n strings in
O(DP (R) + n logn) time.

Proof. If the calls to LcpCompare took constant time, the time complexity
would be O(n logn) by the same argument as with the standard mergesort.

Whenever LcpCompare makes more than one, say 1 + t symbol
comparisons, one of the lcp values stored with the strings increases by t.
The lcp value stored with a string S cannot become larger than dpR(S).
Therefore, the extra time spent in LcpCompare is bounded by O(DP (R)).

�

• Other comparison based sorting algorithms, for example heapsort and
insertion sort, can be adapted for strings using the lcp comparison
technique.

106

