
We can further improve string binary search using precomputed information
about the lcp’s between the strings in R.

Consider again the basic situation during string binary search:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright+1, and we know
lcp(Sleft, P) and lcp(P, Sright+1).

The values left and right depend only on mid. In particular, they do not
depend on P . Thus, we can precompute and store the values

LLCP [mid] = lcp(Sleft, Smid)

RLCP [mid] = lcp(Smid, Sright+1)

127

Now we know all lcp values between P , Sleft, Smid, Sright+1 except
lcp(P, Smid). The following lemma shows how to utilize this.

Lemma 3.33: Let A ≤ B,B′ ≤ C be strings.
(a) If lcp(A,B) > lcp(A,B′), then B < B′ and lcp(B,B′) = lcp(A,B′).
(b) If lcp(A,B) < lcp(A,B′), then B > B′ and lcp(B,B′) = lcp(A,B).
(c) If lcp(B,C) > lcp(B′, C), then B > B′ and lcp(B,B′) = lcp(B′, C).
(d) If lcp(B,C) < lcp(B′, C), then B < B′ and lcp(B,B′) = lcp(B,C).
(e) If lcp(A,B) = lcp(A,B′) and lcp(B,C) = lcp(B′, C), then

lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}.

Proof. Cases (a)–(d) are symmetrical, we show (a). B < B′ follows directly
from Lemma 3.18. Then by Lemma 3.17,
lcp(A,B′) = min{lcp(A,B), lcp(B,B′)}. Since lcp(A,B′) < lcp(A,B), we must
have lcp(A,B′) = lcp(B,B′).

In case (e), we use Lemma 3.17:

lcp(B,B′) ≥ min{lcp(A,B), lcp(A,B′)} = lcp(A,B)

lcp(B,B′) ≥ min{lcp(B,C), lcp(B′, C)} = lcp(B,C)

Thus lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}. �

128

Algorithm 3.34: String binary search (with precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, arrays LLCP and RLCP,

query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n
(2) llcp← 0; rlcp← 0
(3) while left < right do
(4) mid← d(left+ right)/2e
(5) if LLCP [mid] > llcp then left← mid
(6) else if RLCP [mid] > rlcp then right← mid− 1
(7) else if llcp > LLCP [mid] then right← mid− 1; rlcp← LLCP [mid]
(8) else if rlcp > RLCP [mid] then left← mid; llcp← RLCP [mid]
(9) else

(10) mlcp← max{llcp, rlcp}
(11) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(12) if x = “ <′′ then left← mid; llcp← mclp
(13) else right← mid− 1; rlcp← mclp
(14) return left

129

Theorem 3.35: An ordered string set R = {S1, S2, . . . , Sn} can be
preprocessed in O(DP (R)) time and O(n) space so that a binary search with
a query string P can be executed in O(|P |+ logn) time.

Proof. The values LLCP [mid] and RLCP [mid] can be computed in
O(dpR(Smid)) time. Thus the arrays LLCP and RLCP can be computed in
O(DP (R)) time and stored in O(n) space.

The main while loop in Algorithm 3.7.7 is executed O(logn) times and
everything except LcpCompare on line (11) needs constant time.

If a given LcpCompare call performs 1 + t symbol comparisons, mclp
increases by t on line (11). Then on lines (12)–(13), either llcp or rlcp
increase by at least t, since mlcp was max{llcp, rlcp} before LcpCompare.
Since llcp and rlcp never decrease and never grow larger than |P |, the total
number of extra symbol comparisons in LcpCompare during the binary
search is O(|P |). �

130

Binary search can be seen as a search on an implicit binary search tree,
where the middle element is the root, the middle elements of the first and
second half are the children of the root, etc.. The string binary search
technique can be extended for arbitrary binary search trees.

• Let Sv be the string stored at a node v in a binary search tree. Let S<
and S> be the closest lexicographically smaller and larger strings stored
at ancestors of v.

• The comparison of a query string P and the string Sv is done the same
way as the comparison of P and Smid in string binary search. The roles
of Sleft and Sright+1 are taken by S< and S>.

• If each node v stores the values lcp(S<, Sv) and lcp(Sv, S>), then a
search in a balanced search tree can be executed in O(|P |+ logn) time.
Other operations including insertions and deletions take O(|P |+ logn)
time too.

131

4. Suffix Trees and Arrays

Let T = T [0..n) be the text. For i ∈ [0..n], let Ti denote the suffix T [i..n).
Furthermore, for any subset C ∈ [0..n], we write TC = {Ti | i ∈ C}. In
particular, T[0..n] is the set of all suffixes of T .

Suffix tree and suffix array are search data structures for the set T[0..n].

• Suffix tree is a compact trie for T[0..n].

• Suffix array is a ordered array for T[0..n].

They support fast exact string matching on T :

• A pattern P has an occurrence starting at position i if and only if P is a
prefix of Ti.

• Thus we can find all occurrences of P by a prefix search in T[0..n].

There are numerous other applications too, as we will see later.

132

The set T[0..n] contains |T[0..n]| = n+ 1 strings of total length
||T[0..n]|| = Θ(n2). It is also possible that DP (T[0..n]) = Θ(n2), for example,
when T = an or T = XX for any string X.

• Trie with ||T[0..n]|| nodes and ternary tree with DP (T[0..n]) nodes would
be too large.

• Compact trie with O(n) nodes and an ordered array with n+ 1 entries
have linear size.

• Binary search tree with O(n) nodes would be an option too, but an
ordered array is a better choice for a static text. We do not cover the
case of dynamic, changing text on this course: it a non-trivial problem
because changing a single symbol can affect a large number of suffixes.

Even for a compact trie or an ordered array, we need a specialized
construction algorithm, because any general construction algorithm would
need Ω(DP (T[0..n])) time.

133

Suffix Tree

The suffix tree of a text T is the compact trie of the set T[0..n] of all suffixes
of T .

We assume that there is an extra character $ 6∈ Σ at the end of the text.
That is, T [n] = $ and Ti = T [i..n] for all i ∈ [0..n]. Then:

• No suffix is a prefix of another suffix, i.e., the set T[0..n] is prefix free.

• All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms.

Example 4.1: T = banana$.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

134

As with tries, there are many possibilities for implementing the child
operation. We again avoid this complication by assuming that σ is constant.
Then the size of the suffix tree is O(n):

• There are exactly n+ 1 leaves and at most n internal nodes.

• There are at most 2n edges. The edge labels are factors of the text
and can be represented by pointers to the text.

Given the suffix tree of T , all occurrences of P in T can be found in time
O(|P |+ occ), where occ is the number of occurrences.

135

