Brute Force Construction

Let us now look at algorithms for constructing the suffix tree. We start with
a brute force algorithm with time complexity ©(DP(Ty ,)). This is later
modified to obtain a linear time complexity.

The idea is to add suffixes to the trie one at a time starting from the
longest suffix. The insertion procedure is essentially the same as in
Algorithm 3.26 (AC trie construction) except it has been modified to work
on a compact trie instead of a trie.

136

The suffix tree representation uses four functions:
child(u,c) is the child v of node u such that the label of the edge
(u,v) starts with the symbol ¢, and L if « has no such child.
parent(w) is the parent of wu.
depth(u) is the length of the string S, represented by u.

start(u) is the starting position of some occurrence of S, in T.

Then
o S, = TJ[start(u)...start(u) + depth(u)).

e T'[start(u) + depth(parent(w))...start(u) + depth(u)) is the label of the
edge (parent(u),u).

e A pair (u,d) with depth(parent(u)) < d < depth(u) represents a position
on the edge (parent(u),u) corresponding to the string
St.a) = T[start(u) ...start(u) + d).
Note that the positions (u,d) correspond to nodes in the uncompact trie.

137

Algorithm 4.2: Brute force suffix tree construction
Input: text T'[0..n] (T'[n] = $)
Output: suffix tree of T': root, child, parent, depth, start
(1) create new node root; depth(root) < O
(2) u<«root; d<—0
(3) for ¢+ 0 to n do // insert suffix T;

(4) while d = depth(uw) and child(u,T[: 4+ d]) # L do
(5) u «— child(u,T[i +d]); d —d+ 1
(6) while d < depth(u) and T[start(u) +d] =T[:+d] dod«~—d+1
(7) if d < depth(u) then // we are in the middle of an edge
(8) create new node v
(9) start(v) < ¢; depth(v) «— d

(10) p «— parent(u)

(11) child(v, T[start(u) + d]) « u; parent(u) < v

(12) child(p, T[: + depth(p)]) + v; parent(v) «+ p

(13) U — v

(14) create new leaf w // w represents suffix T;

(15) start(w) «— ¢; depth(w) <~ n—14+1

(16) child(u, T[: + d]) < w; parent(w) «— u

(17) u < root; d «— 0

138

Suffix Links

The key to efficient suffix tree construction are suffix links:

slink(u) is the node v such that S, is the longest proper suffix of
Sy, i.e., if Sy, =T[i..j) then S, =T[i+ 1..5).

Example 4.3: The suffix tree of T' = banana$ with internal node suffix links.

139

Suffix links are well defined for all nodes except the root.

Lemma 4.4: If the suffix tree of T' has a node u representing T'[:..5) for any
0 <i< j<n, then it has a node v representing T[i + 1..5)

Proof. If u is the leaf representing the suffix 7;, then v is the leaf
representing the suffix T;4;.

If v is an internal node, then it has two child edges with labels starting with
different symbols, say a and b, which means that T'[:..j)a and T[i..7)b occur

somewhere in T. Then, T[i+ 1..57)a and T[: 4+ 1..5)b occur in T too, and thus
there must be a branching node v representing T[: + 1..5). []

Usually, suffix links are needed only for internal nodes. For root, we define
slink(root) = root.

140

Suffix links are the same as Aho—Corasick failure links but Lemma 4.4
ensures that depth(slink(u)) = depth(u) — 1. This is not the case for an
arbitrary trie or a compact trie.

Suffix links are stored for compact trie nodes only, but we can define and
compute them for any position represented by a pair (u,d):

slink(u, d)
(1) v« slink(parent(u))
(2) while depth(v) <d—1 do
(3) v < child(v, T [start(u) + depth(v) + 1])
(4) return (v,d—1)

__ e Slink(parent(u))

141

The same idea can be used for computing the suffix links during or after the
brute force construction.

ComputeSlink(u)
(1) v« slink(parent(u))
(2) while depth(v) < depth(u) — 1 do

(3) v < child(v, T'[start(u) + depth(v) + 1])
(4) if depth(v) > depth(u) — 1 then
(5) create new node w
(6) start(w) « start(u) + 1; depth(w) «— depth(u) — 1; slink(w) «— L
(7) p «— parent(v)
(8) child(w, T'[start(v) 4+ depth(w)]) < v; parent(v) «— w
(9) child(p, T'[start(w) + depth(p)]) «— w; parent(w) < p
(10) UV — w

(11) slink(u) «— v

The algorithm uses the suffix link of the parent, which must have been
computed before. Otherwise the order of computation does not matter.

142

The creation of a new node on lines (4)—(10) is not necessary in a fully

constructed suffix tree, but during the brute force algorithm the necessary
node may not exist yet:

e If a new internal node wu; was created during the insertion of the suffix
T;, there exists an earlier suffix 7T}, 7 <+ that branches at u; into a
different direction than 7.

e Then slink(u;) represents a prefix of T,4; and thus exists at least as a
position on the path labelled T5,;,. However, it may be that it does not
become a branching node until the insertion of T;4;.

e In such a case, ComputeSlink(u;) creates slink(u;) a moment before it
would otherwise be created by the brute force construction.

143

McCreight’'s Algorithm

McCreight's suffix tree construction is a simple modification of the brute
force algorithm that computes the suffix links during the construction and

uses them as short cuts:

e Consider the situation, where we have just added a leaf w; representing
the suffix 7; as a child to a node u;. The next step is to add w;+1 as a

child to a node wu;41.

e The brute force algorithm finds u;4+1 by traversing from the root.
McCreight's algorithm takes a short cut to slink(u;).

_wslink(u;)

Wi+1

e This is safe because slink(u;) represents a prefix of T;1.

144

Algorithm 4.5: McCreight

Input: text T[0..n] (T'[n] = $)

Output: suffix tree of T. root, child, parent, depth, start, slink
(1) create new node root; depth(root) « O; slink(root) < root
(2) u<«root; d<— 0
(3) for i+ 0 ton do // insert suffix T;

(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

while d = depth(u) and child(u, T[i + d]) % L do
u «— child(u,T[i +d]); d«—d+ 1
while d < depth(u) and T[start(u) +d] =T[i+d] dod«~—d+1
if d < depth(u) then // we are in the middle of an edge
create new node v
start(v) < i; depth(v) <« d; slink(v) «— L
p «— parent(u)
child(v, T'[start(u) + d]) < w; parent(u) «— v
child(p, T[i + depth(p)]) < v; parent(v) «— p
U <— v
create new leaf w // w represents suffix T;
start(w) « i; depth(w) «— n—i4+1
child(w, T[i + d]) < w; parent(w) «— u
if slink(u) = L then ComputeSlink(u)
u <« Slink(u); d+—d—1

145

Theorem 4.6: Let T be a string of length n over an alphabet of constant
size. McCreight's algorithm computes the suffix tree of T in O(n) time.

Proof. Insertion of a suffix 7; takes constant time except in two points:

e The while loops on lines (4)—(6) traverse from the node slink(u;) to
u;+1. Every round in these loops increments d. The only place where d
decreases is on line (18) and even then by one. Since d can never
exceed n, the total time on lines (4)—(6) is O(n).

e The while loop on lines (2)—(3) during a call to ComputeSlink(u;)
traverses from the node slink(parent(u;)) to slink(u;). Let d; be the
depth of parent(u;). Clearly, d;+1 > d; — 1, and every round in the while

loop during ComputeSlink(u;) increases d;,,. Since d; can never be

larger than n, the total time in the loop on lines (2)—(3) in
ComputeSlink is O(n).

]

146

There are other linear time algorithms for suffix tree construction:

e Weiner's algorithm was the first. It inserts the suffixes into the tree in
the opposite order: T,,,T,_1,...,T0.

e Ukkonen's algorithm constructs suffix tree first for T[0..1) then for
T[0..2), etc.. The algorithm is structured differently, but performs
essentially the same tree traversal as McCreight's algorithm.

e All of the above are linear time only for constant alphabet size.
Farach’s algorithm achieves linear time for an integer alphabet of
polynomial size. The algorithm is complicated and unpractical.

147

Applications of Suffix Tree

Let us have a glimpse of the numerous applications of suffix trees.

Exact String Matching

As already mentioned earlier, given the suffix tree of the text, all occ
occurrences of a pattern P can be found in time O(|P| + occ).

Even if we take into account the time for constructing the suffix tree, this is
asymptotically as fast as Knuth—Morris—Pratt for a single pattern and
Aho—Corasick for multiple patterns.

However, the primary use of suffix trees is in indexed string matching, where
we can afford to spend a lot of time in preprocessing the text, but must
then answer queries very quickly.

148

Approximate String Matching

Several approximate string matching algorithms achieving O(kn) worst case
time complexity are based on suffix trees.

Filtering algorithms that reduce approximate string matching to exact string
matching such as partitioning the pattern into k + 1 factors, can use suffix
trees in the filtering phase.

Another approach is to generate all strings in the k-neighborhood of the
pattern, i.e., all strings within edit distance k from the pattern and search
for them in the suffix tree.

The best practical algorithms for indexed approximate string matching are
hybrids of the last two approaches.

149

Text Statistics

Suffix tree is useful for computing all kinds of statistics on the text. For
example:

e The number of distinct factors in the text is exactly the number of
nodes in the (uncompact) trie. Using the suffix tree, this number can
be computed as the total length of the edges plus one (root/empty
string). The time complexity is O(n) even though the resulting value is
typically ©(n?).

e The longest repeating factor of the text is the longest string that
occurs at least twice in the text. It is represented by the deepest
internal node in the suffix tree.

150

Generalized Suffix Tree

A generalized suffix tree of two strings S and T is the suffix three of the
string S£T$, where £ and $ are symbols that do not occur elsewhere in S
and T'.

Each leaf is marked as an S-leaf or a T-leaf according to the starting
position of the suffix it represents. Using a depth first traversal, we
determine for each internal node if its subtree contains only S-leafs, only
T-leafs, or both. The deepest node that contains both represents the
longest common factor of S and T'. It can be computed in linear time.

The generalized suffix tree can also be defined for more than two strings.

151

