Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

- Using standard sorting or string sorting the time complexity is $\Omega(DP(T_{[0..n]}))$.
- Another possibility is to first construct the suffix tree and then traverse it from left to right to collect the suffixes in lexicographical order. The time complexity is $\mathcal{O}(n)$ on a constant size alphabet.

Specialized suffix array construction algorithms are a better option, though.

In fact, possibly the fastest way to construct a suffix tree is to first construct the suffix array and the LCP array, and then the suffix tree using the algorithm we saw earlier.

Prefix Doubling

Our first specialized suffix array construction algorithm is a conceptually simple algorithm achieving $O(n \log n)$ time.

Let T_i^{ℓ} denote the text factor $T[i.. \min\{i + \ell, n + 1\})$ and call it an ℓ -factor. In other words:

- T_i^{ℓ} is the factor starting at *i* and of length ℓ except when the factor is cut short by the end of the text.
- T_i^{ℓ} is the prefix of the suffix T_i of length ℓ , or T_i when $|T_i| < \ell$.

The idea is to sort the sets $T^{\ell}_{[0..n]}$ for ever increasing values of ℓ .

- First sort $T^1_{[0..n]}$, which is equivalent to sorting individual characters. This can be done in $\mathcal{O}(n \log n)$ time.
- Then, for $\ell = 1, 2, 4, 8, ...$, use the sorted set $T^{\ell}_{[0..n]}$ to sort the set $T^{2\ell}_{[0..n]}$ in $\mathcal{O}(n)$ time.
- After O(log n) rounds, ℓ > n and T^ℓ_[0..n] = T_[0..n], so we have sorted the set of all suffixes.

We still need to specify, how to use the order for the set $T_{[0..n]}^{\ell}$ to sort the set $T_{[0..n]}^{2\ell}$. The key idea is assigning order preserving names for the factors in $T_{[0..n]}^{\ell}$. For $i \in [0..n]$, let N_i^{ℓ} be an integer in the range [0..n] such that, for all $i, j \in [0..n]$:

 $N_i^\ell \leq N_j^\ell$ if and only if $T_i^\ell \leq T_j^\ell$.

Then, for $\ell > n$, $N^{\ell}[i] = SA^{-1}[i]$.

For smaller values of ℓ , there can be many ways of satisfying the conditions and any one of them will do. A simple choice is

$$N_i^\ell = |\{j \in [0, n] \mid T_j^\ell < T_i^\ell\}|$$

Example 4.12: Prefix doubling for T = banana.

Now, given N^{ℓ} , for the purpose of sorting, we can use

- N_i^ℓ to represent T_i^ℓ
- the pair $(N_i^{\ell}, N_{i+\ell}^{\ell})$ to represent $T_i^{2\ell} = T_i^{\ell} T_{i+\ell}^{\ell}$.

Thus we can sort $T_{[0..n]}^{2\ell}$ by sorting pairs of integers, which can be done in $\mathcal{O}(n)$ time using LSD radix sort.

Theorem 4.13: The suffix array of a string T[0..n] can be constructed in $O(n \log n)$ time using prefix doubling.

- The technique of assigning order preserving names to factors whose lengths are powers of two is called the Karp-Miller-Rosenberg naming technique. It was developed for other purposes in the early seventies when suffix arrays did not exist yet.
- The best practical implementation is the Larsson–Sadakane algorithm, which uses ternary quicksort instead of LSD radix sort for sorting the pairs, but still achieves $O(n \log n)$ total time.

Let us return to the first phase of the prefix doubling algorithm: assigning names N_i^1 to individual characters. This is done by sorting the characters, which is easily within the time bound $\mathcal{O}(n \log n)$, but sometimes we can do it faster:

- On an ordered alphabet, we can use ternary quicksort for time complexity $\mathcal{O}(n \log \sigma_T)$ where σ_T is the number of distinct symbols in T.
- On an integer alphabet of size n^c for any constant c, we can use LSD radix sort with radix n for time complexity O(n).

After this, we can replace each character T[i] with N_i^1 to obtain a new string T':

- The characters of T' are integers in the range [0..n].
- The character T'[n] = 0 is the unique, smallest symbol, i.e., \$.
- The suffix arrays of T and T' are exactly the same.

Thus, we can assume that the text is like T' during the suffix array construction. After the construction, we can use either T or T' as the text depending on what we want to do.

Recursive Suffix Array Construction

Let us now describe a linear time algorithm for suffix array construction. We assume that the alphabet of the text T[0..n) is [1..n] and that T[n] = 0 (=\$ in the examples).

The outline of the algorithm is:

- **0.** Divide the suffixes into two subsets $A \subset [0..n]$ and $\overline{A} = [0..n] \setminus A$.
- **1.** Sort the set T_A . This is done by a reduction to the suffix array construction of a string of length |A|, which is done recursively.
- **2.** Sort the set $T_{\overline{A}}$ using the order of T_A .
- **3.** Merge the two sorted sets T_A and $T_{\overline{A}}$.

The set A can be chosen so that

- $|A| \leq \alpha n$ for a constant $\alpha < 1$.
- Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence $t(n) = O(n) + t(\alpha n)$, whose solution is t(n) = O(n).

The set A must be chosen so that:

- **1.** Sorting T_A can be reduced to suffix array construction on a text of length |A|.
- **2.** Given sorted T_A the suffix array of T is easy to construct.

There are a few different options. Here we use the simplest one.

Step 0: Select *A*.

• For
$$k \in \{0, 1, 2\}$$
, define $C_k = \{i \in [0..n] \mid i \mod 3 = k\}$.

• Let
$$A = C_1 \cup C_2$$
.

Example 4.14: $i \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$ $T[i] \ y \ a \ b \ b \ a \ d \ a \ b \ b \ a \ d \ o \ $$

 $\bar{A} = C_0 = \{0, 3, 6, 9, 12\}, C_1 = \{1, 4, 7, 10\}, C_2 = \{2, 5, 8, 11\}$ and $A = \{1, 2, 4, 5, 7, 8, 10, 11\}.$

Step 1: Sort T_A .

- For $k \in \{1, 2\}$, Construct the strings $R_k = (T_k^3, T_{k+3}^3, T_{k+6}^3, \dots, T_{\max C_k}^3)$ whose characters are factors of length 3 in the original text, and let $R = R_1 R_2$.
- Replace each factor T_i^3 in R with a lexicographic name $N_i^3 \in [1..|R|]$. The names can be computed by sorting the factors with LSD radix sort in $\mathcal{O}(n)$ time. Let R' be the result appended with 0.
- Construct the inverse suffix array $SA_{R'}^{-1}$ of R'. This is done recursively unless all symbols in R' are unique, in which case $SA_{R'}^{-1} = R'$.
- From $SA_{R'}^{-1}$, we get lexicographic names for suffixes in T_A . For $i \in A$, let $N[i] = SA_{R'}^{-1}[j]$, where j is the position of T_i^3 in R. For $i \in \overline{A}$, let $N[i] = \bot$. Also let N[n+1] = N[n+2] = 0.

Example 4.15:		R	al	ob	ada	bb	ba	do\$	bb	a	dab	bad	o\$	
		R']	L	2	Z	ł	7	4	ŀ	6	3	8	0
	S_{\perp}	$A_{R'}^{-1}$]	L	2	5	5	7	4	ŀ	6	3	8	0
i 0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$egin{array}{cc} T[i] & { t y} \ N[i] & ot \end{array}$	a 1	b 4	b ⊥	а 2	d 6	a ⊥	ъ 5	b 3	a ⊥	d 7	o 8	\$ ⊥	0	0

Step 2: Sort $T_{\overline{A}}$.

- For each $i \in \overline{A}$, we represent T_i with the pair (T[i], N[i+1]). Then $T_i \leq T_j \iff (T[i], N[i+1]) \leq (T[j], N[j+1])$. Note that $N[i+1] \neq \bot$.
- The pairs (T[i], N[i+1]) are sorted by LSD radix sort in $\mathcal{O}(n)$ time.

Example 4.16:

	i	0	1	2	3	4	5	6	7	8	9	10	11	12
Τ	[i]	у	a	b	b	a	d	a	b	b	a	d	ο	\$
N	V[i]	\bot	1	4	\bot	2	6	\bot	5	3	\bot	7	8	\bot

 $T_{12} < T_6 < T_9 < T_3 < T_0$ because (\$, 0) < (a, 5) < (a, 7) < (b, 2) < (y, 1).

Step 3: Merge T_A and $T_{\overline{A}}$.

- Use comparison based merging algorithm needing $\mathcal{O}(n)$ comparisons.
- To compare $T_i \in T_A$ and $T_j \in T_{\overline{A}}$, we have two cases:

 $i \in C_1$: $T_i \leq T_j \iff (T[i], N[i+1]) \leq (T[j], N[j+1])$ $i \in C_2$: $T_i \leq T_j \iff (T[i], T[i+1], N[i+2]) \leq (T[j], T[j+1], N[j+2])$ Note that $N[i+1] \neq \bot$ in the first case and $N[i+2] \neq \bot$ in the second case.

Example 4.17:

i	0	1	2	3	4	5	6	7	8	9	10	11	12
T[i]	У	a	b	b	a	d	a	b	b	a	d	ο	\$
N[i]	\bot	1	4	\bot	2	6	\bot	5	3	\bot	7	8	\bot

 $T_1 < T_6$ because (a, 4) < (a, 5). $T_3 < T_8$ because (b, a, 6) < (b, a, 7). **Theorem 4.18:** The suffix array of a string T[0..n) can be constructed in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

- There are a few other suffix array construction algorithms and one suffix tree construction algorithm (Farach's) with the same time complexity.
- All of them have a similar recursive structure, where the problem is reduced to suffix array construction on a shorter string that represents a subset of all suffixes.

Burrows–Wheeler Transform

The Burrows–Wheeler transform (BWT) is an important technique for text compression, text indexing, and their combination compressed text indexing.

Let T[0..n] be the text with T[n] =\$. For any $i \in [0..n]$, T[i..n]T[0..i) is a rotation of T. Let \mathcal{M} be the matrix, where the rows are all the rotations of T in lexicographical order. All columns of \mathcal{M} are permutations of T. In particular:

- The first column F contains the text characters in order.
- The last column L is the BWT of T.

Example 4.19: The BWT of T = banana is L = annb a.

F						L	
\$	b	a	n	a	n	a	
a	\$	b	a	n	a	n	
a	n	a	\$	b	a	n	
a	n	a	n	a	\$	b	
b	a	n	a	n	a	\$	
n	a	\$	b	a	n	a	
n	a	n	a	\$	b	a	

Here are some of the key properties of the BWT.

• The BWT is easy to compute using the suffix array:

$$L[i] = \begin{cases} \$ & \text{if } SA[i] = 0\\ T[SA[i] - 1] & \text{otherwise} \end{cases}$$

- The BWT is invertible, i.e., T can be reconstructed from the BWT L alone. The inverse BWT can be computed in the same time it takes to sort the characters.
- The BWT L is typically easier to compress than the text T. Many text compression algorithms are based on compressing the BWT.
- The BWT supports backward searching, a different technique for indexed exact string matching. This is used in many compressed text indexes.

Inverse BWT

Let \mathcal{M}' be the matrix obtained by rotating \mathcal{M} one step to the right.

Example 4.20:

- The rows of \mathcal{M}' are the rotations of T in a different order.
- In *M*' without the first column, the rows are sorted lexicographically. If we sort the rows of *M*' stably by the first column, we obtain *M*.

This cycle $\mathcal{M} \xrightarrow{\text{rotate}} \mathcal{M}' \xrightarrow{\text{sort}} \mathcal{M}$ is the key to inverse BWT.

- In the cycle, each column moves one step to the right and is permuted. The permutation is fully determined by the last column of \mathcal{M} , i.e., the BWT.
- By repeating the cycle, we can reconstruct \mathcal{M} from the BWT.
- To reconstruct *T*, we do not need to compute the whole matrix just one row.

Example 4.21:

	$ \begin{array}{c} a \\ n \\ b \\ \hline b \\ \hline s \\ \hline a \\ \hline a \end{array} $	a		$\xrightarrow{\text{sort}}$	\$ a a b n n	a n b \$ a a	\xrightarrow{rotate}	a \$ n a b a \$ b a n a n	 	$\xrightarrow{\text{sort}}$	\$ b a \$ a n a n b a n a n a	a n b \$ a
rotate & sort →	ba a ab n ana n ana b ban b nab b nab a	rotate & sort →	\$ b a n <u>a</u> \$ b a <u>a</u> n a \$ <u>a</u> n a n b a n a n a \$ b n a n a	a n b \$ a a	- rotate & sort →	\$ b a a \$ b a n a a n a b a n n a \$ n a n	n a - a a n - n \$ b - n n a - b a n - \$ b a - a a \$ - a	rotate & sort	\$ b a a \$ b a n a a n a b a n n a \$ n a n	n a n a n a \$ b a n a \$ a n a b a n a \$ b	a n <u>n</u> b \$ a a	

The permutation that transforms \mathcal{M}' into \mathcal{M} is called the LF-mapping.

- LF-mapping is the permutation that stably sorts the BWT L, i.e., F[LF[i]] = L[i]. Thus it is easy to compute from L.
- Given the LF-mapping, we can easily follow a row through the permutations.

```
Algorithm 4.22: Inverse BWT

Input: BWT L[0..n]

Output: text T[0..n]

Compute LF-mapping:

(1) for i \leftarrow 0 to n do R[i] = (L[i], i)

(2) sort R (stably by first element)

(3) for i \leftarrow 0 to n do

(4) (\cdot, j) \leftarrow R[i]; LF[j] \leftarrow i

Reconstruct text:

(5) j \leftarrow position of $ in L

(6) for i \leftarrow n downto 0 do

(7) T[i] \leftarrow L[j]

(8) j \leftarrow LF[j]

(9) return T
```

The time complexity is dominated by the stable sorting.