
String Mergesort

Standard comparison based sorting algorithms are not optimal for sorting
strings because of an imbalance between effort and result in a string
comparison: it can take a lot of time but the result is only a bit or a trit of
useful information.

String quicksort solves this problem by using symbol comparisons where the
constant time is in balance with the information value of the result.

String mergesort takes the opposite approach. It replaces a standard string
comparison with the operation LcpCompare(A,B, k):

• The return value is the pair (x, `), where x ∈ {<,=, >} indicates the
order, and ` is the length of the longest common prefix (lcp) of strings
A and B, denoted by lcp(A,B).

• The input value k is the length of a known common prefix, i.e., a lower
bound on lcp(A,B). The comparison can skip the first k characters.

Any extra time spent in the comparison is balanced by the extra information
obtained in the form of the lcp value.
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The following result show how we can use the information from past
comparisons to obtain a lower bound or even the exact value for an lcp.

Lemma 1.18: Let A, B and C be strings.

(a) lcp(A,C) ≥ min{lcp(A,B), lcp(B,C)}.

(b) If A ≤ B ≤ C, then lcp(A,C) = min{lcp(A,B), lcp(B,C)}.

Proof. Assume ` = lcp(A,B) ≤ lcp(B,C). The opposite case
lcp(A,B) ≥ lcp(B,C) is symmetric.

(a) Now A[0..`) = B[0..`) = C[0..`) and thus lcp(A,C) ≥ `.

(b) Either |A| = ` or A[`] < B[`] ≤ C[`]. In either case, lcp(A,C) = `.

�
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It can also be possible to determine the order of two strings without
comparing them directly.

Lemma 1.19: Let A ≤ B,B′ ≤ C be strings.

(a) If lcp(A,B) > lcp(A,B′), then B < B′.

(b) If lcp(B,C) > lcp(B′, C), then B > B′.

Proof. We show (a); (b) is symmetric. Assume to the contrary that B ≥ B′.
Then by Lemma 1.18, lcp(A,B) = min{lcp(A,B′), lcp(B′, B)} ≤ lcp(A,B′),
which is a contradiction. �
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String mergesort has the same structure as the standard mergesort: sort the
first half and the second half separately, and then merge the results.

Algorithm 1.20: StringMergesort(R)
Input: Set R = {S1, S2, . . . , Sn} of strings.
Output: R sorted and augmented with lcp information.

(1) if |R| = 1 then return {(S1,0)}
(2) m← bn/2c
(3) P ← StringMergesort({S1, S2, . . . , Sm})
(4) Q ← StringMergesort({Sm+1, Sm+2, . . . , Sn})
(5) return StringMerge(P,Q)

The output is of the form

{(T1, `1), (T2, `2), . . . , (Tn, `n)}
where `i = lcp(Ti, Ti−1) for i > 1 and `1 = 0.

In other words, we get not only the order of the strings but also a lot of
information about their common prefixes. The procedure StringMerge uses
this information effectively.
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Algorithm 1.21: StringMerge(P,Q)
Input: Sequences P =

(
(S1, k1), . . . , (Sm, km)

)
and Q =

(
(T1, `1), . . . , (Tn, `n)

)
Output: Merged sequence R

(1) R← ∅; i← 1; j ← 1
(2) while i ≤ m and j ≤ n do
(3) if ki > `j then append (Si, ki) to R; i← i+ 1
(4) else if `j > ki then append (Tj, `j) to R; j ← j + 1
(5) else // ki = `j
(6) (x, h)← LcpCompare(Si, Tj, ki)
(7) if x = ”<” then
(8) append (Si, ki) to R; i← i+ 1
(9) `j ← h

(10) else
(11) append (Tj, `j) to R; j ← j + 1
(12) ki ← h
(13) while i ≤ m do append (Si, ki) to R; i← i+ 1
(14) while j ≤ n do append (Tj, `j) to R; j ← j + 1
(15) return R
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Lemma 1.22: StringMerge performs the merging correctly.

Proof. We will show that the following invariant holds at the beginning of
each round in the loop on lines (2)–(12):

Let X be the last string appended to R (or ε if R = ∅). Then
ki = lcp(X,Si) and `j = lcp(X,Tj).

The invariant is clearly true in the beginning. We will show that the invariant
is maintained and the smaller string is chosen in each round of the loop.

• If ki > `j, then lcp(X,Si) > lcp(X,Tj) and thus

– Si < Tj by Lemma 1.19.

– lcp(Si, Tj) = lcp(X,Tj) because by Lemma 1.18
lcp(X,Tj) = min{lcp(X,Si), lcp(Si, Tj)}.

Hence, the algorithm chooses the smaller string and maintains the
invariant. The case `j > ki is symmetric.

• If ki = `j, then clearly lcp(Si, Tj) ≥ ki and the call to LcpCompare is safe,
and the smaller string is chosen. The update `j ← h or ki ← h maintains
the invariant. �
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Theorem 1.23: String mergesort sorts a set R of n strings in
O(dp(R) + n logn) time.

Proof. If the calls to LcpCompare took constant time, the time complexity
would be O(n logn) by the same argument as with the standard mergesort.

Whenever LcpCompare makes more than one, say 1 + t symbol
comparisons, one of the lcp values stored with the strings increases by t.
The lcp value stored with a string S cannot become larger than dpR(S).
Therefore, the extra time spent in LcpCompare is bounded by O(dp(R)).

�

• Other comparison based sorting algorithms, for example heapsort and
insertion sort, can be adapted for strings using the lcp comparison
technique.
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2. Sets of Strings
A balanced binary search tree is a powerful data structure that stores a set
of objects and supports many operations including:

Insert and Delete.

Lookup: Find if a given object is in the set, and if it is, possibly
return some data associated with the object.

Range query: Find all objects in a given range.

The time complexity of the operations for a set of size n is O(logn) (plus
the size of the result) assuming constant time comparisons.

There are also alternative data structures, particularly if we do not need to
support all operations:

• A hash table supports operations in constant time but does not support
range queries.

• An ordered array is simpler, faster and more space efficient in practice,
but does not support insertions and deletions.

A data structure is called dynamic if it supports insertions and deletions and
static if not.
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When the objects are strings, operations slow down:

• Comparison are slower. For example, the average case time complexity
is O(logn logσ n) for operations in a binary search tree storing a random
set of strings.

• Computing a hash function is slower too.

For a string set R, there are also new types of queries:

Lcp query: What is the length of the longest prefix of the query
string S that is also a prefix of some string in R.

Prefix query: Find all strings in R that have S as a prefix.

The prefix query is a special type of range query.

35



Trie

A trie is a rooted tree with the following properties:

• Edges are labelled with symbols from an alphabet Σ.

• The edges from any node v to its children have all different labels.

Each node represents the string obtained by concatenating the symbols on
the path from the root to that node.

The trie for a strings set R, denoted by trie(R), is the smallest trie that has
nodes representing all the strings in R.

Example 2.1: trie(R) for
R = {pot, potato, pottery, tattoo, tempo}.
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The time and space complexity of a trie depends on the implementation of
the child function:

For a node v and a symbol c ∈ Σ, child(v, c) is u if u is a child of v
and the edge (v, u) is labelled with c, and child(v, c) = ⊥ if v has no
such child.

There are many implementation options including:

Array: Each node stores an array of size σ. The space complexity is
O(σ||R||), where ||R|| is the total length of the strings in R. The time
complexity of the child operation is O(1).

Binary tree: Replace the array with a binary tree. The space complexity is
O(||R||) and the time complexity O(logσ).

Hash table: One hash table for the whole trie, storing the values
child(v, c) 6= ⊥. Space complexity O(||R||), time complexity O(1).

Array and hash table implementations require an integer alphabet; the
binary tree implementation works for an ordered alphabet.
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A common simplification in the analysis of tries is to assume a constant
alphabet. Then the implementation does not matter:

• Insertion, deletion, lookup and lcp query for a string S take O(|S|) time.

• Prefix query takes O(|S|+ `) time, ` is the total length of the strings in
the answer.

The potential slowness of prefix (and range) queries is one of the main
drawbacks of tries.

Note that a trie is a complete representation of the strings. There is no
need to store the strings elsewhere.
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We can construct the trie using the following algorithm, which inserts the
strings one at a time.

Algorithm 2.2: Trie construction
Input: Set of strings R = {S1, S2, . . . , Sn}
Output: trie(R): root, child() and rep()

(1) Create new node root
(2) for i← 1 to n do
(3) v ← root; j ← 0
(4) while child(v, Si[j]) 6= ⊥ do
(5) v ← child(v, Si[j]); j ← j + 1
(6) while j < |Si| do
(7) Create new node u
(8) child(v, Si[j])← u
(9) v ← u; j ← j + 1

(10) rep(v)← i

• The creation of a new node v initializes rep(v) and child(v, c) to ⊥ for
all c ∈ Σ.

• After the execution, rep(v) = i if v represents Si and rep(v) = ⊥ if v
does not represent any string in R.
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The data structures for a string set R become simpler, if R is prefix free.

Definition 2.3: A string set R is prefix free if no string in R is a prefix of
another string in R.

• For example, in trie(R) for a prefix free R, rep(v) 6= ⊥ if and only if v is
a leaf. Then we need to store rep(v) only for leaves. Without prefix
freeness, some internal nodes can have rep(v) 6= ⊥ too.

There is a simple way to make any string set prefix free:

• Let $ 6∈ Σ be an extra symbol satisfying $ < c for all c ∈ Σ.

• Append $ to the end of every string in R.

40


