
Compact Tries

Tries suffer from a large number nodes, Ω(||R||) in the worst case.

• The space requirement is large, since each node needs much more
space than a single symbol.

• Traversal of a subtree is slow, which affects prefix and range queries.

Compact tries reduce the number of nodes by replacing branchless path
segments with a single edge.

• Leaf path compaction applies this to path segments leading to a leaf.
The number of nodes is now O(dp(R)).

• Full path compaction applies this to all path segments. Then every
internal node has at least two children. In such a tree, there is always
more leaves than internal nodes. Thus the number of nodes is O(|R|).

41

Example 2.4: Compact tries for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

tery$

t

empo$
attoo$

ato$

$

o

p

t

tery$

t

empo$
attoo$

ato$

$

pot

The egde labels are factors of the input strings. Thus they can be stored in
constant space using pointers to the strings, which are stored separately.

In a fully compact trie, any subtree can be traversed in linear time in the
number of leaves in the subtree. Thus a prefix query for a string S can be
answered in O(|S|+ r) time, where r is the number of strings in the answer.

42

Ternary Tries

The binary tree implementation of a trie supports ordered alphabets but
awkwardly. Ternary trie is a simpler data structure based on symbol
comparisons.

Ternary trie is like a binary search tree except:

• Each internal node has three children: smaller, equal and larger.

• The branching is based on a single symbol at a given position. The
position is zero at the root and increases along the middle branches.

Ternary tries have variants similar to σ-ary tries:

• A basic ternary trie is a full representation of the strings.

• Compact ternary tries reduce space by compacting branchless path
segments.

43

Example 2.5: Ternary tries for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

p

o
t

t
t

tt
t

a

a

o
o

o

e

m

p

o
e

r

y

$

$

$

$
$

p

a

ttoo$
empo$

tery$

to$

a

$

t

t

o

p

a

to$

ttoo$
empo$

a

t

$

tery$

ot

The sizes of ternary tries have the same asymptotic bounds as the
corresponding tries: O(||R||), O(dp(R)) and O(|R|).

44

A ternary trie is balanced if each left and right subtree contains at most half
of the strings in its parent tree.

• The balance can be maintained by rotations similarly to binary search
trees.

d

D E

b

A B

b

A B

C

d

D E C

rotation

• We can also get reasonably close to balance by inserting the strings in
the tree in a random order.

In a balanced ternary trie each step down either
• moves the position forward (middle branch), or
• halves the number of strings remaining the the subtree.

Thus, in a balanced ternary trie storing n strings, any downward traversal
following a string S takes at most O(|S|+ logn) time.

45

The time complexities of operations in balanced ternary tries are the same
as in the correspoding tries except an additional O(logn):

• Insertion, deletion, lookup and lcp query for a string S takes
O(|S|+ logn) time.

• Prefix query for a string S takes O(|S|+ logn+ ||Q||) time in an
uncompact ternary trie and O(|S|+ logn+ |Q|) time in a compact
ternary trie, where Q is the set of strings given as the result of the
query.

In tries, where the child function is implemented using binary search tree,
the time complexities could be O(|S| logσ), a multiplicative factor instead of
an additive factor.

46

String Binary Search

An ordered array is a simple static data structure supporting queries in
O(logn) time using binary search.

Algorithm 2.6: Binary search
Input: Ordered set R = {k1, k2, . . . , kn}, query value x.
Output: The number of elements in R that are smaller than x.

(1) left← 0; right← n+ 1 // final answer is in the range [left..right)
(2) while right− left > 1 do
(3) mid← left+ b(right− left)/2c
(4) if kmid < x then left← mid
(5) else right← mid
(6) return left

With strings as elements, however, the query time is

• O(m logn) in the worst case for a query string of length m

• O(m+ logn logσ n) on average for a random set of strings.

47

We can use the lcp comparison technique to improve binary search for
strings. The following is a key result.

Lemma 2.7: Let A ≤ B,B′ ≤ C be strings. Then lcp(B,B′) ≥ lcp(A,C).

Proof. Let Bmin = min{B,B′} and Bmax = max{B,B′}. By Lemma 3.17,

lcp(A,C) = min(lcp(A,Bmax), lcp(Bmax, C))

≤ lcp(A,Bmax) = min(lcp(A,Bmin), lcp(Bmin, Bmax))

≤ lcp(Bmin, Bmax) = lcp(B,B′)

�

48

During the binary search of P in {S1, S2, . . . , Sn}, the basic situation is the
following:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright, and we know that
Sleft ≤ P, Smid ≤ Sright.

• If we are using LcpCompare, we know lcp(Sleft, P) and lcp(P, Sright).

By Lemmas 1.18 and 2.7,

lcp(P, Smid) ≥ lcp(Sleft, Sright) = min{lcp(Sleft, P), lcp(P, Sright)}
Thus we can skip min{lcp(Sleft, P), lcp(P, Sright)} first characters when
comparing P and Smid.

49

Algorithm 2.8: String binary search (without precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n+ 1
(2) llcp← 0; rlcp← 0
(3) while right− left > 1 do
(4) mid← left+ b(right− left)/2c
(5) mlcp← min{llcp, rlcp}
(6) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(7) if x = “ < ” then left← mid; llcp← mclp
(8) else right← mid; rlcp← mclp
(9) return left

• The average case query time is now O(m+ logn).

• The worst case query time is still O(m logn).

50

We can further improve string binary search using precomputed information
about the lcp’s between the strings in R.

Consider again the basic situation during string binary search:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright, and we know
lcp(Sleft, P) and lcp(P, Sright).

The values left and right depend only on mid. In particular, they do not
depend on P . Thus, we can precompute and store the values

LLCP [mid] = lcp(Sleft, Smid)

RLCP [mid] = lcp(Smid, Sright)

51

Now we know all lcp values between P , Sleft, Smid, Sright except lcp(P, Smid).
The following lemma shows how to utilize this.

Lemma 2.9: Let A ≤ B,B′ ≤ C be strings.
(a) If lcp(A,B) > lcp(A,B′), then B < B′ and lcp(B,B′) = lcp(A,B′).
(b) If lcp(A,B) < lcp(A,B′), then B > B′ and lcp(B,B′) = lcp(A,B).
(c) If lcp(B,C) > lcp(B′, C), then B > B′ and lcp(B,B′) = lcp(B′, C).
(d) If lcp(B,C) < lcp(B′, C), then B < B′ and lcp(B,B′) = lcp(B,C).
(e) If lcp(A,B) = lcp(A,B′) and lcp(B,C) = lcp(B′, C), then

lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}.

Proof. Cases (a)–(d) are symmetrical, we show (a). B < B′ follows directly
from Lemma 1.19. Then by Lemma 1.18,
lcp(A,B′) = min{lcp(A,B), lcp(B,B′)}. Since lcp(A,B′) < lcp(A,B), we must
have lcp(A,B′) = lcp(B,B′).

In case (e), we use Lemma 1.18:

lcp(B,B′) ≥ min{lcp(A,B), lcp(A,B′)} = lcp(A,B)

lcp(B,B′) ≥ min{lcp(B,C), lcp(B′, C)} = lcp(B,C)

Thus lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}. �

52

Algorithm 2.10: String binary search (with precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, arrays LLCP and RLCP,

query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n+ 1
(2) llcp← 0; rlcp← 0
(3) while right− left > 1 do
(4) mid← left+ b(right− left)/2c
(5) if LLCP [mid] > llcp then left← mid
(6) else if LLCP [mid] < llcp then right← mid; rlcp← LLCP [mid]
(7) else if RLCP [mid] > rlcp then right← mid
(8) else if RLCP [mid] < rlcp then left← mid; llcp← RLCP [mid]
(9) else

(10) mlcp← max{llcp, rlcp}
(11) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(12) if x = “ < ” then left← mid; llcp← mclp
(13) else right← mid; rlcp← mclp
(14) return left

53

Theorem 2.11: An ordered string set R = {S1, S2, . . . , Sn} can be
preprocessed in O(dp(R)) time and O(n) space so that a binary search with
a query string P can be executed in O(|P |+ logn) time.

Proof. The values LLCP [mid] and RLCP [mid] can be computed in
O(dpR(Smid)) time. Thus the arrays LLCP and RLCP can be computed in
O(dp(R)) time and stored in O(n) space.

The main while loop in Algorithm 2.10 is executed O(logn) times and
everything except LcpCompare on line (11) needs constant time.

If a given LcpCompare call performs 1 + t symbol comparisons, mclp
increases by t on line (11). Then on lines (12)–(13), either llcp or rlcp
increases by at least t, since mlcp was max{llcp, rlcp} before LcpCompare.
Since llcp and rlcp never decrease and never grow larger than |P |, the total
number of extra symbol comparisons in LcpCompare during the binary
search is O(|P |). �

54

Binary search can be seen as a search on an implicit binary search tree,
where the middle element is the root, the middle elements of the first and
second half are the children of the root, etc.. The string binary search
technique can be extended for arbitrary binary search trees.

• Let Sv be the string stored at a node v in a binary search tree. Let S<
and S> be the closest lexicographically smaller and larger strings stored
at ancestors of v.

• The comparison of a query string P and the string Sv is done the same
way as the comparison of P and Smid in string binary search. The roles
of Sleft and Sright are taken by S< and S>.

• If each node v stores the values lcp(S<, Sv) and lcp(Sv, S>), then a
search in a balanced search tree can be executed in O(|P |+ logn) time.
Other operations including insertions and deletions take O(|P |+ logn)
time too.

55

Automata

Finite automata are a well known way of representing sets of strings. In this
case, the set is often called a language.

A trie is a special type of an automaton.

• Trie is generally not a minimal automaton.

• Trie techniques including path compaction and ternary branching can
be applied to automata.

Example 2.12: Compacted minimal automaton for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

atpot

$

$

t

emp

atto
o

tery

56

Automata are much more powerful than tries in representing languages:

• Infinite languages

• Nondeterministic automata

• Even an acyclic, deterministic automaton can represent a language of
exponential size.

Automata do not support all operations of tries:

• Insertions and deletions

• Satellite data, i.e., data associated to each string.

57

3. Exact String Matching

Let T = T [0..n) be the text and P = P [0..m) the pattern. We say that P
occurs in T at position j if T [j..j +m) = P .

Example: P = aine occurs at position 6 in T = karjalainen.

In this part, we will describe algorithms that solve the following problem.

Problem 3.1: Given text T [0..n) and pattern P [0..m), report the first
position in T where P occurs, or n if P does not occur in T .

The algorithms can be easily modified to solve the following problems too.

• Is P a factor of T?

• Count the number of occurrences of P in T .

• Report all occurrences of P in T .

58

The naive, brute force algorithm compares P against T [0..m), then against
T [1..m+ 1), then against T [2..m+ 2) etc. until an occurrence is found or
the end of the text is reached.

Algorithm 3.2: Brute force
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) i← 0; j ← 0
(2) while i < m and j < n do
(3) if P [i] = T [j] then i← i+ 1; j ← j + 1
(4) else j ← j − i+ 1; i← 0
(5) if i = m then output j −m else output n

The worst case time complexity is O(mn). This happens, for example, when
P = am−1b = aaa..ab and T = an = aaaaaa..aa.

59

Knuth–Morris–Pratt

The Brute force algorithm forgets everything when it moves to the next
text position.

The Morris–Pratt (MP) algorithm remembers matches. It never goes back
to a text character that already matched.

The Knuth–Morris–Pratt (KMP) algorithm remembers mismatches too.

Example 3.3:
Brute force
ainaisesti-ainainen
ainai//nen (6 comp.)
/ainainen (1)
//ainainen (1)
ai//nainen (3)
/ainainen (1)
//ainainen (1)

Morris–Pratt
ainaisesti-ainainen
ainai//nen (6)

ai//nainen (1)
//ainainen (1)

Knuth–Morris–Pratt
ainaisesti-ainainen
ainai//nen (6)

//ainainen (1)

60

MP and KMP algorithms never go backwards in the text. When they
encounter a mismatch, they find another pattern position to compare
against the same text position. If the mismatch occurs at pattern position i,
then fail[i] is the next pattern position to compare.

The only difference between MP and KMP is how they compute the failure
function fail.

Algorithm 3.4: Knuth–Morris–Pratt / Morris–Pratt
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) compute fail[0..m]
(2) i← 0; j ← 0
(3) while i < m and j < n do
(4) if i = −1 or P [i] = T [j] then i← i+ 1; j ← j + 1
(5) else i← fail[i]
(6) if i = m then output j −m else output n

• fail[i] = −1 means that there is no more pattern positions to compare
against this text positions and we should move to the next text
position.

• fail[m] is never needed here, but if we wanted to find all occurrences, it
would tell how to continue after a full match.

61

We will describe the MP failure function here. The KMP failure function is
left for the exercises.

• When the algorithm finds a mismatch between P [i] and T [j], we know
that P [0..i) = T [j − i..j).

• Now we want to find a new i′ < i such that P [0..i′) = T [j − i′..j).
Specifically, we want the largest such i′.

• This means that P [0..i′) = T [j − i′..j) = P [i− i′..i). In other words,
P [0..i′) is the longest proper border of P [0..i).

Example: ai is the longest proper border of ainai.

• Thus fail[i] is the length of the longest proper border of P [0..i).

• P [0..0) = ε has no proper border. We set fail[0] = −1.

62

Example 3.5: Let P = ainainen. i P [0..i) border fail[i]
0 ε – -1
1 a ε 0
2 ai ε 0
3 ain ε 0
4 aina a 1
5 ainai ai 2
6 ainain ain 3
7 ainaine ε 0
8 ainainen ε 0

The (K)MP algorithm operates like an automaton, since it never moves
backwards in the text. Indeed, it can be described by an automaton that
has a special failure transition, which is an ε-transition that can be taken
only when there is no other transition to take.

-1 1 2 3 4 5 6 7 80
a n a i ni e nΣ

63

An efficient algorithm for computing the failure function is very similar to
the search algorithm itself!

• In the MP algorithm, when we find a match P [i] = T [j], we know that
P [0..i] = T [j − i..j]. More specifically, P [0..i] is the longest prefix of P
that matches a suffix of T [0..j].

• Suppose T = #P [1..m), where # is a symbol that does not occur in P .
Finding a match P [i] = T [j], we know that P [0..i] is the longest prefix
of P that is a proper suffix of P [0..j]. Thus fail[j + 1] = i+ 1.

Algorithm 3.6: Morris–Pratt failure function computation
Input: pattern P = P [0 . . .m)
Output: array fail[0..m] for P

(1) i← −1; j ← 0; fail[j]← i
(2) while j < m do
(3) if i = −1 or P [i] = P [j] then i← i+ 1; j ← j + 1; fail[j]← i
(4) else i← fail[i]
(5) output fail

• When the algorithm reads fail[i] on line 4, fail[i] has already been
computed.

64

Theorem 3.7: Algorithms MP and KMP preprocess a pattern in time O(m)
and then search the text in time O(n).

Proof. It is sufficient to count the number of comparisons that the
algorithms make. After each comparison P [i] = T [j] (or P [i] = P [j]), one of
the two conditional branches is executed:

then Here j is incremented. Since j never decreases, this branch can be
taken at most n+ 1 (m+ 1) times.

else Here i decreases since fail[i] < i. Since i only increases in the
then-branch, this branch cannot be taken more often than the
then-branch.

�

65

