
• The search time of BDM and BOM is O(n(logσm)/m), which is
optimal on average. (BNDM is optimal only when m ≤ w.)

• MP and KMP are optimal in the worst case.

• There are also algorithms that are optimal in both cases. They are
based on similar techniques, but we will not describe them here.
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Karp–Rabin

The Karp–Rabin algorithm uses a hash function H : Σ∗ → [0..q) ⊂ N for
strings. It computes computes the hash values or fingerprints H(P ) and
H(T [j..j +m)) for all j ∈ [0..n−m].

• If H(P ) 6= H(T [j..j +m)), then we must have P 6= T [j..j +m).

• If H(P ) = H(T [j..j +m), the algorithm compares P and T [j..j +m) in
brute force manner. If P 6= T [j..j +m), this is a false positive.

A good hash function has two important properties:

• False positives are rare.

• Given H(aα), a and b, where a, b ∈ Σ and α ∈ Σ∗, we can quickly
compute H(αb). This is a called rolling or sliding window hash function.

The latter property is essential for fast computation of H(T [j..j +m))
for all j.
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The hash function used by Karp–Rabin is

H(c0c1c2 . . . cm−1) = (c0r
m−1 + c1r

m−2 + · · ·+ cm−2r + cm−1) mod q

This is a rolling hash function:

H(α) = (H(aα)− arm−1) mod q

H(αb) = (H(α) · r + b) mod q

which follows from the rules of modulo arithmetic:

(x+ y) mod q = ((x mod q) + (y mod q)) mod q

(xy) mod q = ((x mod q)(y mod q)) mod q

The parameters q and r have to be chosen with some care to ensure that
false positives are rare.

• The original choice is r = σ and q is a large prime.

• Another possibility is q = 2w, where w is the machine word size, and r is
a small prime (r = 37 has been suggested). This is faster in practice,
because it avoids slow modulo operations.

• The hash function can be randomized by choosing q or r randomly.
Furthermore, we can change q or r when a false positive occurs.

83



Algorithm 3.17: Karp-Rabin

Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) Choose q and r; s← rm−1 mod q
(2) hp← 0;ht← 0
(3) for i← 0 to m− 1 do hp← (hp · r + P [i]) mod q // hp = H(P )
(4) for j ← 0 to m− 1 do ht← (ht · r + T [j]) mod q
(5) for j ← 0 to n−m− 1 do
(6) if hp = ht then if P = T [j . . . j +m) then return j
(7) ht← ((ht− T [j] · s) · r + T [j +m]) mod q
(8) if hp = ht then if P = T [j . . . j +m) then return j
(9) return n

On an integer alphabet:

• The worst case time complexity is O(mn).

• The average case time complexity is O(m+ n).

Karp–Rabin is not competitive in practice, but hashing can be a useful
technique in other contexts.
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Aho–Corasick Algorithm

Given a text T and a set P = {P1.P2, . . . , Pk} of patterns, the multiple exact
string matching problem asks for the occurrences of all the patterns in the
text. The Aho–Corasick algorithm is an extension of the Morris–Pratt
algorithm for multiple exact string matching.

Aho–Corasick uses the trie trie(P) as an automaton and augments it with a
failure function similar to the Morris-Pratt failure function.

Example 3.18: Aho–Corasick automaton for P = {he, she, his, hers}.

1 20

h

s

e

e sr

i

s

3 4 5

6 7

8 9
Σ

-1
h

85



Algorithm 3.19: Aho–Corasick
Input: text T , pattern set P = {P1, P2, . . . , Pk}.
Output: all pairs (i, j) such that Pi occurs in T ending at j.

(1) Construct AC automaton
(2) v ← root
(3) for j ← 0 to n− 1 do
(4) while child(v, T [j]) = ⊥ do v ← fail(v)
(5) v ← child(v, T [j])
(6) for i ∈ patterns(v) do output (i, j)

Let Sv denote the string that node v represents.

• root is the root and child() the child function of the trie.

• fail(v) = u such that Su is the longest proper suffix of Sv represented by
any node.

• patterns(v) is the set of pattern indices i such that Pi is a suffix of Sv.

At each stage, the algorithm computes the node v such that Sv is the
longest suffix of T [0..j] represented by any node.
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Algorithm 3.20: Aho–Corasick trie construction
Input: pattern set P = {P1, P2, . . . , Pk}.
Output: AC trie: root, child() and patterns().

(1) Create new node root
(2) for i← 1 to k do
(3) v ← root; j ← 0
(4) while child(v, Pi[j]) 6= ⊥ do
(5) v ← child(v, Pi[j]); j ← j + 1
(6) while j < |Pi| do
(7) Create new node u
(8) child(v, Pi[j])← u
(9) v ← u; j ← j + 1

(10) patterns(v)← {i}

This is the standard trie construction (Algorithm 2.2) except rep() has been
replaced by patterns():

• The creation of a new node v initializes patterns(v) to ∅.

• At the end, i ∈ patterns(v) iff v represents Pi.
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Algorithm 3.21: Aho–Corasick automaton construction
Input: AC trie: root, child() and patterns()
Output: AC automaton: fail() and updated AC trie

(1) Create new node fallback
(2) for c ∈ Σ do child(fallback, c)← root
(3) fail(root)← fallback
(4) queue← {root}
(5) while queue 6= ∅ do
(6) u← popfront(queue)
(7) for c ∈ Σ such that child(u, c) 6= ⊥ do
(8) v ← child(u, c)
(9) w ← fail(u)

(10) while child(w, c) = ⊥ do w ← fail(w)
(11) fail(v)← child(w, c)
(12) patterns(v)← patterns(v) ∪ patterns(fail(v))
(13) pushback(queue, v)

The algorithm does a breath first traversal of the trie. This ensures that
correct values of fail() and patterns() are already computed when needed.
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fail(v) is correctly computed on lines (8)–(11):

• The nodes that represent suffixes of Sv that are exactly
fail∗(v) = {v, fail(v), fail(fail(v)), . . . , root}.

• Let u = parent(v) and child(u, c) = v. Then S is a suffix of Su iff Sc is
suffix of Sv. Thus

– If w ∈ fail∗(v), then parent(fail(v)) ∈ fail∗(u).

– If w ∈ fail∗(u) and child(w, c) 6= ⊥, then child(w, c) ∈ fail∗(v).

• Therefore, fail(v) = child(w, c), where w is the first node in fail∗(u)
other than u such that child(w, c) 6= ⊥.

patterns(v) is correctly computed on line (12):

patterns(v) = {i | Pi is a suffix of Sv}
= {i | Pi = Sw and w ∈ fail∗(v)}
= {i | Pi = Sv} ∪ patterns(fail(v))
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Assuming σ is constant:

• The search time is O(n).

• The space complexity is O(m), where m = ||P||.

– Implementation of patterns() requires care (exercise).

• The preprocessing time is O(m), where m = ||P||.

– The only non-trivial issue is the while-loop on line (10).

– Let root, v1, v2, . . . , v` be the nodes on the path from root to a node
representing a pattern Pi. Let wj = fail(vj) for all j. Let depth(v) be
the depth of a node v (depth(root) = 0).

– When computing wj, depth(wj) = depth(wj−1) + 1 before line (10)
and depth(wj) ≤ depth(wj−1) + 1− tj after line (10), where tj is the
number of rounds in the while-loop.

– Thus, the total number of rounds is at most ` = |Pi| when
computing w1, w2, . . . , w`, and at most ||P|| over the whole algorithm.

The analysis when σ is not constant is left as an exercise.

90



4. Approximate String Matching

Often in applications we want to search a text for something that is similar
to the pattern but not necessarily exactly the same.

To formalize this problem, we have to specify what does “similar” mean.
This can be done by defining a similarity or a distance measure.

A natural and popular distance measure for strings is the edit distance, also
known as the Levenshtein distance.
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Edit distance

The edit distance ed(A,B) of two strings A and B is the minimum number of
edit operations needed to change A into B. The allowed edit operations are:

S Substitution of a single character with another character.

I Insertion of a single character.

D Deletion of a single character.

Example 4.1: Let A = Lewensteinn and B = Levenshtein. Then
ed(A,B) = 3.

The set of edit operations can be described

with an edit sequence: NNSNNNINNNND
or with an alignment: Lewens-teinn

Levenshtein-

In the edit sequence, N means No edit.
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