
On an integer alphabet, when m ≤ w:

• Pattern preprocessing time is O(m+ σ).

• Search time is O(n).

When m > w, we can store each bit vector in dm/we machine words:

• The worst case search time is O(ndm/we).

• Using Ukkonen’s cut-off heuristic, it is possible reduce the average case
search time to O(ndk/we).

125

There are also algorithms based on bitparallel simulation of a
nondeterministic automaton.

Example 4.22: P = pattern, k = 3
a t t e r np

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

a t t e r np

Σε Σε Σε Σε Σε Σε Σε
Σ Σ Σ Σ Σ Σ Σ Σ

no errors

1 error

2 errors

3 errors

• The algorithm of Wu and Manber uses a bit vector for each row. It can
be seen as an extension of Shift-And. The search time complexity is
O(kndm/we).

• The algorithm of Baeza-Yates and Navarro uses a bit vector for each
diagonal, packed into one long bitvector. The search time complexity is
O(ndkm/we).

126

Baeza-Yates–Perleberg Filtering Algorithm

A filtering algorithm for approximate strings matching searches the text for
factors having some property that satisfies the following conditions:

1. Every approximate occurrence of the pattern has this property.

2. Strings having this property are reasonably rare.

3. Text factors having this property can be found quickly.

Each text factor with the property is a potential occurrence, and it is
verified for whether it is an actual approximate occurrence.

Filtering algorithms can achieve linear or even sublinear average case time
complexity.

127

The following lemma shows the property used by the Baeza-Yates–Perleberg
algorithm and proves that it satisfies the first condition.

Lemma 4.23: Let P1P2 . . . Pk+1 = P be a partitioning of the pattern P into
k + 1 nonempty factors. Any string S with ed(P, S) ≤ k contains Pi as a
factor for some i ∈ [1..k + 1].

Proof. Each single symbol edit operation can change at most one of the
pattern factors Pi. Thus any set of at most k edit operations leaves at least
one of the factors untouched. �

128

The algorithm has two phases:

Filtration: Search the text T for exact occurrences of the pattern factors Pi.
Using the Aho–Corasick algorithm this takes O(n) time for a constant
alphabet.

Verification: An area of length O(m) surrounding each potential occurrence
found in the filtration phase is searched using the standard dynamic
programming algorithm in O(m2) time.

The worst case time complexity is O(m2n), which can be reduced to O(mn)
by combining any overlapping areas to be searched.

129

Let us analyze the average case time complexity of the verification phase.

• The best pattern partitioning is as even as possible. Then each pattern
factor has length at least r = bm/(k + 1)c.

• The expected number of exact occurrences of a random string of
length r in a random text of length n is at most n/σr.

• The expected total verification time is at most

O
(
m2(k + 1)n

σr

)
≤ O

(
m3n

σr

)
.

This is O(n) if r ≥ 3 logσm.

• The condition r ≥ 3 logσm is satisfied when (k + 1) ≤ m/(3 logσm+ 1).

Theorem 4.24: The average case time complexity of the
Baeza-Yates–Perleberg algorithm is O(n) when k ≤ m/(3 logσm+ 1)− 1.

130

Many variations of the algorithm have been suggested:

• The filtration can be done with a different multiple exact string
matching algorithm:

– The first algorithm of this type by Wu and Manber used an
extension of the Shift-And algorithm.

– An extension of BDM achieves O(nk(logσm)/m) average case
search time. This is sublinear for small enough k.

– An extension of the Horspool algorithm is very fast in practice for
small k and large σ.

• Using a technique called hierarchical verification, the average
verification time for a single potential occurrence can be reduced to
O((m/k)2).

A filtering algorithm by Chang and Marr has average case time complexity
O(n(k + logσm)/m), which is optimal.

131

5. Suffix Trees and Arrays

Let T = T [0..n) be the text. For i ∈ [0..n], let Ti denote the suffix T [i..n).
Furthermore, for any subset C ∈ [0..n], we write TC = {Ti | i ∈ C}. In
particular, T[0..n] is the set of all suffixes of T .

Suffix tree and suffix array are search data structures for the set T[0..n].

• Suffix tree is a compact trie for T[0..n].

• Suffix array is a ordered array for T[0..n].

They support fast exact string matching on T :

• A pattern P has an occurrence starting at position i if and only if P is a
prefix of Ti.

• Thus we can find all occurrences of P by a prefix search in T[0..n].

There are numerous other applications too, as we will see later.

132

The set T[0..n] contains |T[0..n]| = n+ 1 strings of total length
||T[0..n]|| = Θ(n2). It is also possible that dp(T[0..n]) = Θ(n2), for example,
when T = an or T = XX for any string X.

• A basic trie with O(||T[0..n]||) nodes or a trie with compact leaf edges
with O(dp(T[0..n])) nodes could be too large.

• A compact trie with O(n) nodes and an ordered array with n+ 1 entries
have linear size.

• A compact ternary trie and a string binary search tree have O(n) nodes
too. However, the construction algorithms and some other algorithms
we will see are not straightforward to adapt for these data structures.

Even for a compact trie or an ordered array, we need a specialized
construction algorithm, because any general construction algorithm would
need Ω(dp(T[0..n])) time.

133

Suffix Tree

The suffix tree of a text T is the compact trie of the set T[0..n] of all suffixes
of T .

We assume that there is an extra character $ 6∈ Σ at the end of the text.
That is, T [n] = $ and Ti = T [i..n] for all i ∈ [0..n]. Then:

• No suffix is a prefix of another suffix, i.e., the set T[0..n] is prefix free.

• All nodes in the suffix tree representing a suffix are leaves.

This simplifies algorithms.

Example 5.1: T = banana$.

1
3

5

6

2

4

0

$

$

$
na$

na
$

na

na$

banana$

a

134

As with tries, there are many possibilities for implementing the child
operation. We again avoid this complication by assuming that σ is constant.
Then the size of the suffix tree is O(n):

• There are exactly n+ 1 leaves and at most n internal nodes.

• There are at most 2n edges. The edge labels are factors of the text
and can be represented by pointers to the text.

Given the suffix tree of T , all occurrences of P in T can be found in time
O(|P |+ occ), where occ is the number of occurrences.

135

Brute Force Construction

Let us now look at algorithms for constructing the suffix tree. We start with
a brute force algorithm with time complexity Θ(dp(T[0..n])). This is later
modified to obtain a linear time complexity.

The idea is to add suffixes to the trie one at a time starting from the
longest suffix. The insertion procedure is essentially the same as in
Algorithm 2.2 (trie construction) except it has been modified to work on a
compact trie instead of a trie.

136

The suffix tree representation uses four functions:

child(u, c) is the child v of node u such that the label of the edge
(u, v) starts with the symbol c, and ⊥ if u has no such child.

parent(u) is the parent of u.

depth(u) is the length of the string Su represented by u.

start(u) is the starting position of some occurrence of Su in T .

Then

• Su = T [start(u) . . . start(u) + depth(u)).

• T [start(u) + depth(parent(u)) . . . start(u) + depth(u)) is the label of the
edge (parent(u), u).

• A pair (u, d) with depth(parent(u)) < d ≤ depth(u) represents a position
on the edge (parent(u), u) corresponding to the string
S(u,d) = T [start(u) . . . start(u) + d).

Note that the positions (u, d) correspond to nodes in the uncompact trie.

137

Algorithm 5.2: Brute force suffix tree construction
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start

(1) create new node root; depth(root)← 0
(2) u← root; d← 0
(3) for i← 0 to n do // insert suffix Ti
(4) while d = depth(u) and child(u, T [i+ d]) 6= ⊥ do
(5) u← child(u, T [i+ d]); d← d+ 1
(6) while d < depth(u) and T [start(u) + d] = T [i+ d] do d← d+ 1
(7) if d < depth(u) then // we are in the middle of an edge
(8) create new node v
(9) start(v)← i; depth(v)← d

(10) p← parent(u)
(11) child(v, T [start(u) + d])← u; parent(u)← v
(12) child(p, T [i+ depth(p)])← v; parent(v)← p
(13) u← v
(14) create new leaf w // w represents suffix Ti
(15) start(w)← i; depth(w)← n− i+ 1
(16) child(u, T [i+ d])← w; parent(w)← u
(17) u← root; d← 0

138

Suffix Links

The key to efficient suffix tree construction are suffix links:

slink(u) is the node v such that Sv is the longest proper suffix of
Su, i.e., if Su = T [i..j) then Sv = T [i+ 1..j).

Example 5.3: The suffix tree of T = banana$ with internal node suffix links.

1
3

5

6

2

4

0

$

$

$

na$

na
$

na

na$

banana$

a

139

Suffix links are well defined for all nodes except the root.

Lemma 5.4: If the suffix tree of T has a node u representing T [i..j) for any
0 ≤ i < j ≤ n, then it has a node v representing T [i+ 1..j)

Proof. If u is the leaf representing the suffix Ti, then v is the leaf
representing the suffix Ti+1.

If u is an internal node, then it has two child edges with labels starting with
different symbols, say a and b, which means that T [i..j)a and T [i..j)b occur
somewhere in T . Then, T [i+ 1..j)a and T [i+ 1..j)b occur in T too, and thus
there must be a branching node v representing T [i+ 1..j). �

Usually, suffix links are needed only for internal nodes. For root, we define
slink(root) = root.

140

