
Suffix links are the same as Aho–Corasick failure links but Lemma 4.4
ensures that depth(slink(u)) = depth(u)− 1. This is not the case for an
arbitrary trie or a compact trie.

Suffix links are stored for compact trie nodes only, but we can define and
compute them for any position represented by a pair (u, d):

slink(u, d)
(1) v ← slink(parent(u))
(2) while depth(v) < d− 1 do
(3) v ← child(v, T [start(u) + depth(v) + 1])
(4) return (v, d− 1)

parent(u)

(u, d)

u
slink(u)

slink(u, d)

slink(parent(u))

141

The same idea can be used for computing the suffix links during or after the
brute force construction.

ComputeSlink(u)
(1) v ← slink(parent(u))
(2) while depth(v) < depth(u)− 1 do
(3) v ← child(v, T [start(u) + depth(v) + 1])
(4) if depth(v) > depth(u)− 1 then
(5) create new node w
(6) start(w)← start(u) + 1; depth(w)← depth(u)− 1; slink(w)← ⊥
(7) p← parent(v)
(8) child(w, T [start(v) + depth(w)])← v; parent(v)← w
(9) child(p, T [start(w) + depth(p)])← w; parent(w)← p

(10) v ← w
(11) slink(u)← v

The algorithm uses the suffix link of the parent, which must have been
computed before. Otherwise the order of computation does not matter.

142

The creation of a new node on lines (4)–(10) is not necessary in a fully
constructed suffix tree, but during the brute force algorithm the necessary
node may not exist yet:

• If a new internal node ui was created during the insertion of the suffix
Ti, there exists an earlier suffix Tj, j < i that branches at ui into a
different direction than Ti.

• Then slink(ui) represents a prefix of Tj+1 and thus exists at least as a
position on the path labelled Tj+1. However, it may be that it does not
become a branching node until the insertion of Ti+1.

• In such a case, ComputeSlink(ui) creates slink(ui) a moment before it
would otherwise be created by the brute force construction.

143

McCreight’s Algorithm

McCreight’s suffix tree construction is a simple modification of the brute
force algorithm that computes the suffix links during the construction and
uses them as short cuts:

• Consider the situation, where we have just added a leaf wi representing
the suffix Ti as a child to a node ui. The next step is to add wi+1 as a
child to a node ui+1.

• The brute force algorithm finds ui+1 by traversing from the root.
McCreight’s algorithm takes a short cut to slink(ui).

slink(ui)
ui

wi
wi+1

ui+1

• This is safe because slink(ui) represents a prefix of Ti+1.

144

Algorithm 5.5: McCreight
Input: text T [0..n] (T [n] = $)
Output: suffix tree of T : root, child, parent, depth, start, slink

(1) create new node root; depth(root)← 0; slink(root)← root
(2) u← root; d← 0
(3) for i← 0 to n do // insert suffix Ti

(4) while d = depth(u) and child(u, T [i + d]) 6= ⊥ do
(5) u← child(u, T [i + d]); d← d + 1
(6) while d < depth(u) and T [start(u) + d] = T [i + d] do d← d + 1
(7) if d < depth(u) then // we are in the middle of an edge
(8) create new node v
(9) start(v)← i; depth(v)← d; slink(v)← ⊥

(10) p← parent(u)
(11) child(v, T [start(u) + d])← u; parent(u)← v
(12) child(p, T [i + depth(p)])← v; parent(v)← p
(13) u← v
(14) create new leaf w // w represents suffix Ti

(15) start(w)← i; depth(w)← n− i + 1
(16) child(u, T [i + d])← w; parent(w)← u
(17) if slink(u) = ⊥ then ComputeSlink(u)
(18) u← slink(u); d← d− 1

145

Theorem 5.6: Let T be a string of length n over an alphabet of constant
size. McCreight’s algorithm computes the suffix tree of T in O(n) time.

Proof. Insertion of a suffix Ti takes constant time except in two points:

• The while loops on lines (4)–(6) traverse from the node slink(ui) to
ui+1. Every round in these loops increments d. The only place where d
decreases is on line (18) and even then by one. Since d can never
exceed n, the total time on lines (4)–(6) is O(n).

• The while loop on lines (2)–(3) during a call to ComputeSlink(ui)
traverses from the node slink(parent(ui)) to slink(ui). Let d′i be the
depth of parent(ui). Clearly, d′i+1 ≥ d′i − 1, and every round in the while
loop during ComputeSlink(ui) increases d′i+1. Since d′i can never be
larger than n, the total time in the loop on lines (2)–(3) in
ComputeSlink is O(n).

�

146

There are other linear time algorithms for suffix tree construction:

• Weiner’s algorithm was the first. It inserts the suffixes into the tree in
the opposite order: Tn, Tn−1, . . . , T0.

• Ukkonen’s algorithm constructs suffix tree first for T [0..1) then for
T [0..2), etc.. The algorithm is structured differently, but performs
essentially the same tree traversal as McCreight’s algorithm.

• All of the above are linear time only for constant alphabet size.
Farach’s algorithm achieves linear time for an integer alphabet of
polynomial size. The algorithm is complicated and unpractical.

147

Applications of Suffix Tree

Let us have a glimpse of the numerous applications of suffix trees.

Exact String Matching

As already mentioned earlier, given the suffix tree of the text, all occ
occurrences of a pattern P can be found in time O(|P |+ occ).

Even if we take into account the time for constructing the suffix tree, this is
asymptotically as fast as Knuth–Morris–Pratt for a single pattern and
Aho–Corasick for multiple patterns.

However, the primary use of suffix trees is in indexed string matching, where
we can afford to spend a lot of time in preprocessing the text, but must
then answer queries very quickly.

148

Approximate String Matching

Several approximate string matching algorithms achieving O(kn) worst case
time complexity are based on suffix trees.

Filtering algorithms that reduce approximate string matching to exact string
matching such as partitioning the pattern into k + 1 factors, can use suffix
trees in the filtering phase.

Another approach is to generate all strings in the k-neighborhood of the
pattern, i.e., all strings within edit distance k from the pattern and search
for them in the suffix tree.

The best practical algorithms for indexed approximate string matching are
hybrids of the last two approaches.

149

Text Statistics

Suffix tree is useful for computing all kinds of statistics on the text. For
example:

• The number of distinct factors in the text is exactly the number of
nodes in the (uncompact) trie. Using the suffix tree, this number can
be computed as the total length of the edges plus one (root/empty
string). The time complexity is O(n) even though the resulting value is
typically Θ(n2).

• The longest repeating factor of the text is the longest string that
occurs at least twice in the text. It is represented by the deepest
internal node in the suffix tree.

150

Generalized Suffix Tree

A generalized suffix tree of two strings S and T is the suffix three of the
string S£T$, where £ and $ are symbols that do not occur elsewhere in S
and T .

Each leaf is marked as an S-leaf or a T -leaf according to the starting
position of the suffix it represents. Using a depth first traversal, we
determine for each internal node if its subtree contains only S-leafs, only
T -leafs, or both. The deepest node that contains both represents the
longest common factor of S and T . It can be computed in linear time.

The generalized suffix tree can also be defined for more than two strings.

151

AC Automaton for the Set of Suffixes

As already mentioned, a suffix tree with suffix links is essentially an
Aho–Corasick automaton for the set of all suffixes.

• We saw that it is possible to follow suffix link / failure transition from
any position, not just from suffix tree nodes.

• Following such an implicit suffix link may take more than a constant
time, but the total time during the scanning of a string with the
automaton is linear in the length of the string. This can be shown with
a similar argument as in the construction algorithm.

Thus suffix tree is asymptotically as fast to operate as the AC automaton,
but needs much less space.

152

Matching Statistics

The matching statistics of a string T [0..n) with respect to a string S is an
array MS[0..n), where MS[i] is a pair (`i, pi) such that

1. T [i..i + `i) is the longest prefix of Ti that is a factor of S, and

2. S[pi..pi + `i) = T [i..i + `i).

Matching statistics can be computed by using the suffix tree of S as an
AC-automaton and scanning T with it.

• If before reading T [i] we are at the node v in the automaton, then
T [i− d..i) = S[j..j + d), where j = start(v) and d = depth(v).

• If reading T [i] causes a failure transition, then MS[i− d] = (d, j).
Following the failure transtion decrements d and thus increments i− d
by one.

• Following a normal transition, increments both i and d by one, and thus
i− d stays the same.

From the matching statistics, we can easily compute the longest common
factor of S and T . Because we need the suffix tree only for S, this saves
space compared to a generalized suffix tree.

Matching statistics are also used in some approximate string matching
algorithms.

153

LCA Preprocessing

The lowest common ancestor (LCA) of two nodes u and v is the deepest
node that is an ancestor of both u and v. Any tree can be preprocessed in
linear time so that the LCA of any two nodes can be computed in constant
time. The details are omitted here.

• Let wi and wj be the leaves of the suffix tree of T that represent the
suffixes Ti and Tj. The lowest common ancestor of wi and wj represents
the longest common prefix of Ti and Tj. Thus the lcp of any two
suffixes can be computed in constant time using the suffix tree with
LCA preprocessing.

• The longest common prefix of two suffixes Si and Tj from two different
strings S and T is called the longest common extension. Using the
generalized suffix tree with LCA preprocessing, the longest common
extension for any pair of suffixes can be computed in constant time.

Some O(kn) worst case time approximate string matching algorithms use
longest common extension data structures.

154

Longest Palindrome

A palindrome is a string that is its own reverse. For example,
saippuakauppias is a palindrome.

We can use the LCA preprocessed generalized suffix tree of a string T and
its reverse TR to find the longest palindrome in T in linear time.

• Let ki be the length of the longest common extension of Ti and TR
n−i−1,

which can be computed in constant time. Then T [i− ki..i + ki] is the
longest odd length palindrome with the middle at i.

• We can find the longest odd length palindrome by computing ki for all
i ∈ [0..n) in O(n) time.

• The longest even length palindrome can be found similarly in O(n) time.

155

Suffix Array

The suffix array of a text T is a lexicographically ordered array of the set
T[0..n] of all suffixes of T . More precisely, the suffix array is an array SA[0..n]
of integers containing a permutation of the set [0..n] such that
TSA[0] < TSA[1] < · · · < TSA[n].

A related array is the inverse suffix array SA−1 which is the inverse
permutation, i.e., SA−1[SA[i]] = i for all i ∈ [0..n].

As with suffix trees, it is common to add the end symbol T [n] = $. It has no
effect on the suffix array assuming $ is smaller than any other symbol.

Example 5.7: The suffix array and the inverse suffix array of the text
T = banana$.

i SA[i] TSA[i]
0 6 $
1 5 a$
2 3 ana$
3 1 anana$
4 0 banana$
5 4 na$
6 2 nana$

j SA−1[j]
0 4 banana$
1 3 anana$
2 6 nana$
3 2 ana$
4 5 na$
5 1 a$
6 0 $

156

Suffix array is much simpler data structure than suffix tree. In particular,
the type and the size of the alphabet are usually not a concern.

• The size on the suffix array is O(n) on any alphabet.

• We will see that the suffix array can be constructed in the same
asymptotic time it takes to sort the characters of the text.

As with suffix trees, exact string matching in T can be performed by prefix
search on the suffix array. The answer can be conveniently given as a
contiguous range in the suffix array containing the suffixes. The range can
be found using string binary search.

• If we have the additional arrays LLCP and RLCP , the result range can
be computed in O(|P |+ logn) time.

• Without the additional arrays, we have the same time complexity on
average but the worst case time complexity is O(|P | logn).

• We can then count the number of occurrences in O(1) time, list all occ
occurrences in O(occ) time, or list a sample of k occurrences in O(k)
time.

157

LCP Array

Efficient string binary search uses the arrays LLCP and RLCP . For many
applications, the suffix array is augmented with a different lcp array
LCP [1..n]. For all i,

LCP [i] = lcp(TSA[i], TSA[i−1])

This is the same as the lcp information in the output of StringMergesort.

Example 5.8: The LCP array for T = banana$.

i SA[i] LCP [i] TSA[i]
0 6 $
1 5 0 a$
2 3 1 ana$
3 1 3 anana$
4 0 0 banana$
5 4 0 na$
6 2 2 nana$

158

The suffix tree can be easily constructed from the suffix and LCP arrays in
linear time.

• Insert the suffixes into the tree in lexicographical order.

• The leaf wi representing the suffix Ti is inserted as the rightmost leaf.
The parent ui of wi is along the rightmost path in the tree, and the
depth of ui is LCP [i]. If there is no node at that depth, a new node is
inserted.

uiLCP [i]

wi−1 wi

• Keep the nodes on the rightmost path on a stack with the deepest
node on top. The node ui or the edge, where ui is inserted, is found by
removing nodes from the stack until the right depth has been reached.
Note that the removed nodes are no more on the rightmost path after
the insertion of wi.

159

The suffix tree can be replaced by the suffix and LCP arrays in many
applications. For example:

• The longest repeating factor is marked by the maximum value in the
LCP array.

• The number of distinct factors can be compute by the formula

n(n + 1)

2
+ 1−

n∑
i=1

LCP [i]

This follows from the suffix tree construction on the previous slide and
the formula we saw earlier for the suffix tree.

• Matching statistics of T with respect to S can be computed in linear
time using the generalized suffix array of S and T (i.e., suffix array of
S£T$) and its LCP array.

160

RMQ Preprocessing

The range minimum query (RMQ) asks for the smallest value in a given
range in an array. Any array can be preprocessed in linear time so that RMQ
for any range can be answered in constant time.

In the LCP array, RMQ can be used for computing the lcp of any two
suffixes.

Lemma 5.9: The length of the longest common prefix of two suffixes
Ti < Tj is lcp(Ti, Tj) = min{LCP [k] | k ∈ [SA−1[i] + 1..SA−1[j]]}.

The proof is left as an exercise.

• The RMQ preprocessing of the LCP array supports the same kind of
applications as the LCA preprocessing of the suffix tree. RMQ
preprocessing is much simpler than LCA preprocessing.

• The RMQ preprocessed LCP array can also replace the LLCP and
RLCP arrays.

161

We will next describe the RMQ data structure for an arbitrary array L[1..n]
of integers.

• We precompute and store the minimum values for the following
collection of ranges:
– Divide L[1..n] into blocks of size logn.
– For all 0 ≤ ` ≤ log(n/ logn)), include all ranges that consist of 2`

blocks. There are O(n) such ranges.
– Include all prefixes and suffixes of blocks. There are O(n) such

ranges.

• Now any range L[i..j] that overlaps or touches a block boundary can be
exactly covered by at most four ranges in the collection.

The minimum value in L[i..j] is the minimum of the minimums of the
covering ranges and can be computed in constant time.

162

Ranges L[i..j] that are completely inside one block are handled differently.

• Let P (i) = min{k > i | L[k] < L[i]}. Then the position of the minimum
value in the range L[i..j] is the last position in the sequence
i, P (i), P (P (i)), . . . that is in the range.

• Store the positions i, P (i), P (P (i)), . . . up to the end of the block
containing i as a bit vector B(i) of at most logn bits. We assume that
logn bits fits in a single machine word. Thus we need O(n) words to
store B(i) for all i.

• The position of the minimum in L[i..j] is found as follows:
– Turn all bits in B(i) after position j into zeros. This can be done in

constant time using bitwise shift- and and-operations.
– The right-most 1-bit indicates the position of the minimum. It can

be found in constant time using a lookup table of size O(n).

All the data structures can be constructed in O(n) time (exercise).

163

Enhanced Suffix Array

The enhanced suffix array adds two more arrays to the suffix and LCP
arrays to make the data structure fully equivalent to suffix tree.

• The idea is to represent a suffix tree node v by a suffix array range
corresponding to the suffixes that are in the subtree rooted at v.

• The additional arrays support navigation in the suffix tree using this
representation: one array along the regular edges, the other along suffix
links.

164

