
LCP Array Construction

The LCP array is easy to compute in linear time using the suffix array SA
and its inverse SA−1. The idea is to compute the lcp values by comparing
the suffixes, but skip a prefix based on a known lower bound for the lcp
value obtained using the following result.

Lemma 5.10: For any i ∈ [0..n), LCP [SA−1[i+ 1]] ≥ LCP [SA−1[i]]− 1

Proof. Let Tj be the lexicographic predecessor of Ti, i.e., Tj < Ti and there
are no other suffixes between them in the lexicographical order.

• Then LCP [SA−1[i]] = lcp(Ti, Tj) = `. If ` = 0, the claim is trivially true.

• If ` > 0, then for some symbol c, Ti = cTi+1 and Tj = cTj+1. Thus
Tj+1 < Ti+1 and lcp(Ti+1, Tj+1) = `− 1.

• Let Tk be the immediate lexicographical predecessor of Ti+1. Then
either k = j + 1 or Tj+1 < Tk < Ti+1. In either case,

LCP [[SA−1[i+ 1]] = lcp(Ti+1, Tk) ≥ lcp(Ti+1, Tj+1) = `− 1 .

�
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The algorithm computes the lcp values in the order that makes it easy to
use the above lower bound.

Algorithm 5.11: LCP array construction
Input: text T [0..n], suffix array SA[0..n], inverse suffix array SA−1[0..n]
Output: LCP array LCP [1..n]

(1) `← 0
(2) for i← 0 to n− 1 do
(3) k ← SA−1[i] // i = SA[k]
(4) j ← SA[k − 1]
(5) while T [i+ `] = T [j + `] do `← `+ 1
(6) LCP [k]← `
(7) if ` > 0 then `← `− 1
(8) return LCP

The time complexity is O(n):

• Everything except the while loop on line (5) takes clearly linear time.

• Each round in the loop increments `. Since ` is decremented at most n
times on line (7) and cannot grow larger than n, the loop is executed
O(n) times in total.
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Suffix Array Construction

Suffix array construction means simply sorting the set of all suffixes.

• Using standard sorting or string sorting the time complexity is
Ω(dp(T[0..n])).

• Another possibility is to first construct the suffix tree and then traverse
it from left to right to collect the suffixes in lexicographical order. The
time complexity is O(n) on a constant alphabet.

Specialized suffix array construction algorithms are a better option, though.

In fact, possibly the fastest way to construct a suffix tree is to first
construct the suffix array and the LCP array, and then the suffix tree using
the algorithm we saw earlier.
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Prefix Doubling

Our first specialized suffix array construction algorithm is a conceptually
simple algorithm achieving O(n logn) time.

Let T `i denote the text factor T [i..min{i+ `, n+ 1}) and call it an `-factor.
In other words:

• T `i is the factor starting at i and of length ` except when the factor is
cut short by the end of the text.

• T `i is the prefix of the suffix Ti of length `, or Ti when |Ti| < `.

The idea is to sort the sets T `[0..n] for ever increasing values of `.

• First sort T 1
[0..n], which is equivalent to sorting individual characters.

This can be done in O(n logn) time.

• Then, for ` = 1,2,4,8, . . . , use the sorted set T `[0..n] to sort the set T 2`
[0..n]

in O(n) time.

• After O(logn) rounds, ` > n and T `[0..n] = T[0..n], so we have sorted the
set of all suffixes.
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We still need to specify, how to use the order for the set T `[0..n] to sort the

set T 2`
[0..n]. The key idea is assigning order preserving names for the factors in

T `[0..n]. For i ∈ [0..n], let N `
i be an integer in the range [0..n] such that, for all

i, j ∈ [0..n]:

N `
i ≤ N `

j if and only if T `i ≤ T `j .

Then, for ` > n, N `
i = SA−1[i].

For smaller values of `, there can be many ways of satisfying the conditions
and any one of them will do. A simple choice is

N `
i = |{j ∈ [0, n] | T `j < T `i }| .

Example 5.12: Prefix doubling for T = banana$.

N1

4 b
1 a
5 n
1 a
5 n
1 a
0 $

N2

4 ba
2 an
5 na
2 an
5 na
1 a$
0 $

N4

4 bana
3 anan
6 nana
2 ana$
5 na$
1 a$
0 $

N8 = SA−1

4 banana$
3 anana$
6 nana$
2 ana$
5 na$
1 a$
0 $
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Now, given N `, for the purpose of sorting, we can use

• N `
i to represent T `i

• the pair (N `
i , N

`
i+`) to represent T 2`

i = T `i T
`
i+`.

Thus we can sort T 2`
[0..n] by sorting pairs of integers, which can be done in

O(n) time using LSD radix sort.

Theorem 5.13: The suffix array of a string T [0..n] can be constructed in
O(n logn) time using prefix doubling.

• The technique of assigning order preserving names to factors whose
lengths are powers of two is called the Karp–Miller–Rosenberg naming
technique. It was developed for other purposes in the early seventies
when suffix arrays did not exist yet.

• The best practical implementation is the Larsson–Sadakane algorithm,
which uses ternary quicksort instead of LSD radix sort for sorting the
pairs, but still achieves O(n logn) total time.
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Let us return to the first phase of the prefix doubling algorithm: assigning
names N1

i to individual characters. This is done by sorting the characters,
which is easily within the time bound O(n logn), but sometimes we can do
it faster:

• On an ordered alphabet, we can use ternary quicksort for time
complexity O(n logσT) where σT is the number of distinct symbols in T .

• On an integer alphabet of size nc for any constant c, we can use LSD
radix sort with radix n for time complexity O(n).

After this, we can replace each character T [i] with N1
i to obtain a new

string T ′:

• The characters of T ′ are integers in the range [0..n].

• The character T ′[n] = 0 is the unique, smallest symbol, i.e., $.

• The suffix arrays of T and T ′ are exactly the same.

Thus, we can assume that the text is like T ′ during the suffix array
construction. After the construction, we can use either T or T ′ as the text
depending on what we want to do.
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Recursive Suffix Array Construction

Let us now describe a linear time algorithms for suffix array construction.
We assume that the alphabet of the text T [0..n) is [1..n] and that T [n] = 0
(=$ in the examples).

The outline of the algorithms is:

0. Choose a subset C ⊂ [0..n].

1. Sort the set TC. This is done by a reduction to the suffix array
construction of a string of length |C|, which is done recursively.

2. Sort the set T[0..n] using the order of TC.

The set C can be chosen so that

• |C| ≤ αn for a constant α < 1.

• Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence
t(n) = O(n) + t(αn), whose solution is t(n) = O(n).
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The set C must be chosen so that:

1. Sorting TC can be reduced to suffix array construction on a text of
length |C|.

2. Given sorted TC the suffix array of T is easy to construct.

We look at two different ways of choosing C leading to two different
algorithms:

• DC3 uses difference cover sampling

• SAIS uses induced sorting

173



Difference Cover Sampling

A difference cover Dq modulo q is a subset of [0..q) such that all values in
[0..q) can be expressed as a difference of two elements in Dq modulo q. In
other words:

[0..q) = {i− j mod q | i, j ∈ Dq} .

Example 5.14: D7 = {1,2,4}

1− 1 = 0 1− 4 = −3 ≡ 4 (mod q)
2− 1 = 1 2− 4 = −2 ≡ 5 (mod q)
4− 2 = 2 1− 2 = −1 ≡ 6 (mod q)
4− 1 = 3

In general, we want the smallest possible difference cover for a given q.

• For any q, there exist a difference cover Dq of size O(
√
q).

• The DC3 algorithm uses the simplest non-trivial difference cover
D3 = {1,2}.
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A difference cover sample is a set TC of suffixes, where

C = {i ∈ [0..n] | i mod q ∈ Dq} .

Example 5.15: If T = banana$ and D3 = {1,2},
then C = {1,2,4,5} and TC = {anana$, nana$, na$, a$}.

Once we have sorted the difference cover sample TC, we can compare any
two suffixes in O(q) time.

Example 5.16: D3 = {1,2} and C = {1,2,4,5, . . . }
T0 = T [0]T1

T1 = T [1]T2

T0 = T [0]T [1]T2

T2 = T [2]T [3]T4

T0 = T [0]T1

T3 = T [3]T4

There is a tradeoff in choosing q, because we want to

• minimize comparison time O(q) and

• minimize sample size |C| ≤ |Dq|
q

(n+ 1) = O
(
n√
q

)
.

With DC3, it is enough that |C| ≤ 2
3
(n+ 1).
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Algorithm 5.17: DC3

Step 0: Choose C.

• Use difference cover D3 = {1,2}.

• For k ∈ {0,1,2}, define Ck = {i ∈ [0..n] | i mod 3 = k}.

• Let C = C1 ∪ C2 and C̄ = C0.

Example 5.18: i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $

C̄ = C0 = {0,3,6,9,12}, C1 = {1,4,7,10}, C2 = {2,5,8,11} and
C = {1,2,4,5,7,8,10,11}.
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Step 1: Sort TC.

• For k ∈ {1,2}, Construct the strings Rk = (T 3
k , T

3
k+3, T

3
k+6, . . . , T

3
maxCk

)
whose characters are factors of length 3 in the original text, and let
R = R1R2.

• Replace each factor T 3
i in R with a lexicographic name N3

i ∈ [1..|R|].
The names can be computed by sorting the factors with LSD radix sort
in O(n) time. Let R′ be the result appended with 0.

• Construct the inverse suffix array SA−1
R′ of R′. This is done recursively

unless all symbols in R′ are unique, in which case SA−1
R′ = R′.

• From SA−1
R′ , we get lexicographic names for suffixes in TC.

For i ∈ C, let Ni = SA−1
R′ [j], where j is the position of T 3

i in R.
For i ∈ C̄, let Ni = ⊥. Also let Nn+1 = Nn+2 = 0.

Example 5.19: R abb ada bba do$ bba dab bad o$
R′ 1 2 4 7 4 6 3 8 0

SA−1
R′ 1 2 5 7 4 6 3 8 0

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥ 0 0
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Step 2(a): Sort TC̄.

• For each i ∈ C̄, we represent Ti with the pair (T [i], Ni+1). Then

Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1) .

Note that Ni+1 6= ⊥ for all i.

• The pairs (T [i], Ni+1) are sorted by LSD radix sort in O(n) time.

Example 5.20:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T12 < T6 < T9 < T3 < T0 because ($,0) < (a,5) < (a,7) < (b,2) < (y,1).
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Step 2(b): Merge TC and TC̄.

• Use comparison based merging algorithm needing O(n) comparisons.

• To compare Ti ∈ TC and Tj ∈ TC̄, we have two cases:

i ∈ C1 : Ti ≤ Tj ⇐⇒ (T [i], Ni+1) ≤ (T [j], Nj+1)

i ∈ C2 : Ti ≤ Tj ⇐⇒ (T [i], T [i+ 1], Ni+2) ≤ (T [j], T [j + 1], Nj+2)

Note that for all i, Ni+1 6= ⊥ in the first case and Ni+2 6= ⊥ in the
second case.

Example 5.21:

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T [i] y a b b a d a b b a d o $
Ni ⊥ 1 4 ⊥ 2 6 ⊥ 5 3 ⊥ 7 8 ⊥

T1 < T6 because (a,4) < (a,5).
T3 < T8 because (b, a,6) < (b, a,7).
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Theorem 5.22: Algorithm DC3 constructs the suffix array of a string
T [0..n) in O(n) time plus the time needed to sort the characters of T .

There are many variants:

• DC3 is an optimal algorithm under several parallel and external memory
computation models, too. There exists both parallel and external
memory implementations of DC3.

• Using a larger value of q, we obtain more space efficient algorithms. For
example, using q = logn, the time complexity is O(n logn) and the
space needed in addition to the text and the suffix array is O(n/

√
logn).
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