
58093 String Processing Algorithms (Autumn 2011)
Exercises 3 (15 November)

1. Describe how to modify the LSD radix sort algorithm to handle strings of varying lengths. The
time complexity should be the one given in Theorem 1.14.

2. Ω(dp(R)) is a lower bound for string sorting for any algorithm if characters can be accessed only
one at a time. However, for a small alphabet, it is possible to pack several characters into one
machine word. Then multiple characters can be accessed simultaneously and treated as if they
were a single super-character. For example, the string abbaba over the alphabet Σ = {a,b}
can be thought of as the string (ab,ba,ab) over the alphabet Σ2. Algorithms taking advantage
of this are called super-alphabet algorithms.

Develop a super-alphabet version of MSD radix sort. What is the time complexity?

3. Use the lcp comparison technique to modify the standard insertion sort algorithm so that it sorts
strings in O(dp(R) + n2) time.

4. LetR = {manne,manu,minna,salla,saul,sauli,vihtori}.

(a) Give the compact trie ofR.

(b) Give the balanced compact ternary trie ofR.

5. Show that the number of nodes in a trie trie(R) is exactly ||R|| − lcp(R) + 1, where ||R|| is
the total length of the strings in R and lcp(R) is as defined in Exercise 2.5. Hint: Consider the
construction of trie(R) using Algorithm 2.2.

6. Give an example showing that the worst case time complexity of string binary search without
precomputed lcp information is Ω(m log n).

7. Define

MLCP [mid] = max{LLCP [mid], RLCP [mid]}

D[mid] =

{
0 if MLCP [mid] = LLCP [mid]
1 otherwise

Show that, if we store the arrays MLCP and D instead of LLCP and RLCP , we can compute
LLCP [mid] and RLCP [mid] when needed during the string binary search.

