Data Compression Techniques (Spring 2012)
Course Exam, 01 March 2012. Solutions.

1. [2+2+42+2+2+2 points] What is the main difference between the concepts in the following
pairs:

(a)

prefix codes versus arithmetic coding

Solution. Prefix codes have integer lengths and (typically) map each source symbol
to one code. Arithmetic coding maps the whole source string to one code. The
resulting coding can then be seen as prefix codes having fractional code lengths.

gamma code versus delta code

Solution. Gamma codes use unary coding to encode the length of the binary rep-
resentation, whereas delta codes use a gamma code to represent the length.

entropy versus zeroth order empirical entropy

Solution. The entropy is defined for an arbitrary probability distribution, whereas
the 0-th order empirical entropy is defined on the frequency of symbols in a given
string.

Grading. Full points for stating the main difference. One point subtracted for just
defining the consept(s) and/or stating a secondary difference.

Define the following concepts:

(d)

zero frequency problem

Solution. When an adaptive encoding process encounters a source symbol for the
first time, the symbol has a probability equal to zero (since it has not occurred in the
previously compressed part). This leads to problems because, in general, symbols
having a zero probability cannot be encoded. The problem can be avoided by e.g.
adding one to the counts of all symbols.

coarse optimality

Solution. A text compression algorithm is called coarsely optimal if the compressed
size of T'[0,n) is bounded by nHy(T') + o(nlogo) bits for any k = o(log, n), where
Hy(T) is the k-th order entropy and o is the alphabet size (more details on Slide
102).

searchable prefix sums

Solution. Let L[0,n) be a sequence of positive integers that sum up to u. A
searchable prefix sums data structure supports the operations sump(j) = > ._. L[i]
for j € [0,n], and searchr,(i) = max{j € [0,n]|sump(j) < i} for i € [0,u].

1<J

Grading. Full points for stating the correct definition. One point subtracted for
some errors.

A few lines for each part is sufficient.

2. [6+6 points] Compress the text T = senselessness using zeroth order semiadaptive
Huffman coding.

(a)

Construct the Huffman code using the symbol frequencies in the text. Encode T'
using the code.

Solution.



The symbol frequencies are: symbol e 1 n s
frequency | 4/13 1/13 2/13 6/13
The Huffman tree looks like this:

(o)
sy) (9
o(9) [
@ e
and the codes are:  symbol | e 1 n s
code | 10 110 111 O

The encoded text is 01011101011010001111000.
Grading.

Most received full points. The most common error was to use adaptive Huffman
instead of semiadaptive. 1 point was awarded for these.

(b) The encoded text must be stored with additional information that is needed for
decoding the text. Describe what information must be stored, and how to store it
using as few bits as possible.

You may assume that the alphabet is fixed to {e,1,n,s} and the alphabetical order
ise<l<n<s.

Solution.

The information that must be stored is the length of the text and the codes for all
symbols. The length can be encoded using gamma or delta code. For the codes,
there are several alternatives:

e Encode the symbol counts using, for example, gamma coding in the alphabetical
order. The decoder can use the same algorithm as the encoder to reconstruct
the code. In this case, the text length does not need to be encoded, since it is
the sum of the symbol counts.

e Encode the text length n and then the symbol counts using codes of fixed length
[log(n+1)]. Even better, encode the symbol counts using interpolative encoding.

e It is enough to store the lengths of the codes. For any set of code lengths (sat-

isfying Kraft’s inequality), it is possible to construct a code with those lengths.
The compressor and the decompressor just have to agree on the algorithm. In
particular, they can agree to use the canonical codes.
The code lengths can be encoded using unary or Golomb-Rice codes and listed
in the alphabetical order of the symbols. There may be symbols that do not
occur in the text and have no code assigned to them. (In this case there are
none.) The code length 0 can be used for such symbols.

Grading.

Two points for text length and four points for the codes with half of the points for
what and half for how.

3. [6+6 points] Let L = rttrraa$ii be the Burrows—Wheeler transform for a text 7. The
order of the symbols is $ < a < 1 < r < t. The last character of T is $.



(a) What is 7?7 Explain step-by-step the inverse Burrows—Wheeler transform, i.e., how
T can be recovered from L.
Solution. 7' = ritaritar$.
T can be recovered as follows. First, we stable sort the string L to get a new string
F and an LF-mapping that maps from the j-th s € ¥ in L to the j-th s in F'. The
LF-mapping can be used to reverse the Burrows—Wheeler transform: let i¢g denote
the position such that L[ig] = $, then the original T is recovered in reversed order

by

Llis), LILF[is]], ..., LILF"'[is]],
where LF7[i] denotes the recursion LFV[ig] = LF[LF7~[ig]].
Grading.

Full points for providing a correct solution and clear explanation. 1-3 points sub-
tracted for missing explanation or errors.

(b) Give the wavelet tree of L. Explain how the wavelet tree can be used in the inverse
Burrows—Wheeler transform.

Solution.
rttrraa$ii
1111100011
aas rttrrii
110 1111100
$ aa ii rttrr
01100
rrr tt

The wavelet tree supports the rank and select operations. Since the LF-mapping can
be computed with e.g. LF[i] = selectp(s,ranky(s,i)) where s = accessy (i) (more
details on Slide 132), we can use wavelet trees to compute the inverse BWT.
Grading.

Three points for giving the wavelet tree (any shape). Up to three additional points
for explaining the connection to the inverse BWT.

4. [7+7 points] Compare LZ77 (without distance or length limits) and LZ78 parsings.

(a) Give an example of a text, where the number of phrases in the LZ78 parsing is much
larger than in the LZ77 parsing.
Solution.
Let T = a™. The LZ77 parsing has just two phrases a and a”~!'. The phrases in the
LZ78 parsing are

3 .4 k-1 _k

a,aa,a’,at, ..., a1 aF ank(kt1)/2

where k£ is the largest integer such that k(k +1)/2 < n. Thus the number of phrases

is ©(y/n).



Grading.

Five points for a text with the main part periodic, i.e., of the form z* for some
string « and integer k. Full points for observing that the number of LZ77 phrases is
constant with respect to k while the number of LZ78 phrases grows without bound.
One point subtracted for some errors.

Prove that the number of phrases in the LZ78 parsing is never smaller than in the
LZ77 parsing.
Solution.

Informally, the idea is that any LZ78 phrase is of the form zs, where x is an earlier
phrase and thus a subtring of the text. Therefore, xs is also a legal (but not neces-
sarily the longest possible) LZ77 phrase. Thus an LZ77 phrase starting at position
1 is always at least as long as an LZ78 phrase starting at position ¢. The formal
proof below covers also the general situation, where the starting positions are not
synchronized.

Let T be a text with LZ78 parsing
Tlig..i1)T[i1..i2)T[ig..i3) . . .

and LZ77 parsing
Tjo0--71)T[j1--72) T [j2--73) - - -

We will show by induction that i < j for all k.
Base case: ig = 0 = jp.
Induction step: The assumption is that 11 < jr_1 and we need to show that i; < ji.
Since jr > jr—1 + 1, we have the following trivial cases:

e If the phrase T'[ig_1...ix) is a single symbol, iy = ix—1 +1 < jr—1 + 1 < ji.

® i < Jr—1+1< ji.
Otherwise, the phrase T[ix_1..ix) is of the form T'[i;_1...i;)s, where [ < k and s is a
single symbol. Then T[ij_1 + (jx—1 —ik—1).--01) = T[Jr—1...ix — 1), i.e., T[jg—1.-.i — 1)
has an earlier occurrence at T'[i;_1 + (jg—1 —tk—1)-..5;). Thus T'[jr_1...ix) is a possible
LZ77 phrase (but not necessarily the longest possible). Therefore, ji > if.
Grading.
Four points for the informal observation in the beginning of the solution above or
something equivalent. Full points for dealing with the unsynchronized situation too.



