
Data Compression Techniques
Renewal/Separate Exam, 13 April 2012 at 16-20 Lecturer: Juha Kärkkäinen

Please write on each sheet: your name, student number or identity number, signature, course
name, exam date and sheet number. You can answer in English, Finnish or Swedish.

1. [2+2+2+2+2 points] Define the following concepts:

(a) zeroth order empirical entropy

Solution. The zeroth order empirical entropy of a text T over an alphabet Σ is

H0(T) = −
∑
s∈Σ

fs log fs

where fs is the relative frequency of the symbol s in T .

(b) grammar compression

Solution. Grammar compression is a text compression method that represents a
text T using a context free grammar that generates T and only T .

(c) balanced parentheses sequence

Solution. A balanced parenthesis sequence is a binary sequence B[0..2n) satisfy-
ing excessB(2n) = 0 and excessB(i) ≥ 0 for all i ∈ [0..2n], where excessB(i) =
rank-1B(i)− rank-0B(i). The 1-bits are interpreted as opening parentheses and the
0-bits as closing parentheses.

What is the main difference between the concepts in the following pairs:

(d) LZW versus original LZ78

Solution. In LZW

• initial dictionary contains all individual symbols (strings of length one)

• each text phrase is encoded as a pointer to the dictionary

• the text phrase plus the next symbol is added to dictionary.

In LZ78

• initial dictionary contains only the empty string.

• each text phrase is encoded as a pointer to the dictionary plus one symbol

• the text phrase is added to dictionary as such.

(e) adaptive versus semiadaptive compression model

Solution. An adaptive model is computed for every text prefix T [0..i), i ∈ [0..n),
and then used for encoding T [i]. A semadaptive model is computed from T [0..n)
and then used for encoding each text symbol. In other words, the same semiadaptive
model is used for all text symbols but the adaptive model can be different for each
symbol.

A few lines for each part is sufficient.

2. [5+5 points] Consider the following prefix code:

symbol a b c d e f g h i

code 1010 111 00101 000 01 1011 110 0011 00100

(a) Show that the code is redundant, i.e., satisfies Kraft’s inequality with strict inequality.

Solution.

2−4 + 2−3 + 2−5 + 2−3 + 2−2 + 2−4 + 2−3 + 2−4 + 2−5

=
2 + 4 + 1 + 4 + 8 + 2 + 4 + 2 + 1

32
=

28

32
< 1.

(b) Modify the code by deleting some bits in the codewords so that the result is a
complete prefix code, i.e., satisfies Kraft’s inequality with equality. You may not add
or change any bits, only delete them.

Solution. Delete the third bit in the codewords for a and f:

symbol a b c d e f g h i

code 100 111 00101 000 01 101 110 0011 00100

Then

2−3 + 2−3 + 2−5 + 2−3 + 2−2 + 2−3 + 2−3 + 2−4 + 2−5

=
4 + 4 + 1 + 4 + 8 + 4 + 4 + 2 + 1

32
=

32

32
= 1.

3. [10 points] Let {a, b, c, d} be the alphabet with the probability distribution

symbol a b c d

probability 0.4 0.2 0.1 0.3

Encode the string “bad” as a binary sequence using exact arithmetic coding. Give the
intermediate steps in the encoding process. You may assume that the length of the string
is known and does not need to be encoded.

Solution. First compute the source interval:

string interval
ε [0, 1)
b [0.4, 0.6)
ba [0.4 + 0.2 · 0.0, 0.4 + 0.2 · 0.4) = [0.4, 0.48)
bad [0.4 + 0.08 · 0.7, 0.4 + 0.08 · 1.0) = [0.456, 0.48)

Then find the code interval, which is the largest dyadic interval that is completely con-
tained by the source interval.

code interval
ε [0, 1)
0 [0, 1− 2−1) = [0, 0.5)
01 [0 + 2−2, 0.5) = [0.25, 0.5)
011 [0.25 + 2−3, 0.5) = [0.375, 0.5)
0111 [0.375 + 2−4, 0.5) = [0.4375, 0.5)
01110 [0.4375, 0.5− 2−5) = [0.4375, 0.46875)
011101 [0.4375 + 2−6, 0.46875) = [0.453125, 0.46875)
0111011 [0.453125 + 2−7, 0.46875) = [0.4609375, 0.46875)

The code string is 0111011.

4. [10 points] What are the properties of the Burrows–Wheeler transform that make it a
useful tool for higher order text compression? Make your answer as complete as possible.
Use examples to illustrate your answer.

Solution. The BWT is a transformation of a text that can be computed in linear time.
It is invertible and the inverse transform can be computed in linear time too.

The BWT is permutation of the text where the symbols are sorted by their right context.
This means that the symbols with the same context are consecutive in the BWT. In a
text, there is often a strong correlation between symbols and their contexts, which means
that the consecutive symbols sharing a context have a strong correlation between each
other. This correlation can be used for compression.

Formally, one can prove the following result. For any text T and any k∑
w∈Σk

|Lw|H0(Lw) = |T |Hk(T)

where Lw (a context block) is the symbols of T with the right context w. In other words,
zeroth order compression of the context blocks achieves kth order compression of the text.
This is known as compression boosting.

Furthermore, for most symbols s in the BWT, the nearest preceding symbols share a long
context with s, symbols that are a little further away share a short context with s, and
symbols far away share no context at all. Thus an adaptive model that predicts each
symbol using the preceding symbols and gives a higher weight to the nearest symbols is
often a good predictor. Such models are called context oblivious and give rise to simple
compression methods such run length encoding and move-to-front encoding.

5. [10 points] Let M be a n×n sparse matrix that contains m non-null entries. The non-null
entries are integers from the interval [0..σ). Design a compressed representation for M .
The representation should support the following operations:

• access(i, j) returns the value at M [i, j] (which may be null). The time complexity
should be constant.

• row(i) returns all non-null values on the row i. The time complexity should be
O(k + 1), where k is the number of values returned.

• column(j) returns all non-null values on the column j. The time complexity should
be O(k + 1), where k is the number of values returned.

The space complexity should be as small as possible. You may use any of the compressed
data structures described on the lectures.

Solution.

The non-null entries are concatenated into an array A[0..m) in row major order. For
each row, there is a bit vector of length n marking the non-null entries, and these are
concatenated into a one bit vector R of n2 bits. Now

access(i, j) = A[rank-1B(in+ j)]

and
row(i) = A[rank-1R(in)..rank-1R((i+ 1)n)

To implement column-operation, we store bit vectors for columns marking non-null entries
and concatenated into a single bit vector C. Then

column(j) = {access(selectC(i), j) | i ∈ [rank-1C(jn)..rank-1C((j + 1)n)}

The bit vectors R and C are processed to support rank and in constant time. Then the
operations have the required time complexities. Each bit vector can be stored in

n2H0(R) + o(n2) = m log(n2/m) +O(m) + o(n2)

bits. In addition, we need the space for the m non-null entries.

