
582487 Data Compression Techniques

Lectures, Spring 2012, period III

Juha Kärkkäinen

1

0. Introduction

Data compression deals with encoding information in as few bits as is
possible or reasonable. The purpose is (usually) to reduce resource
requirements:

• Permanent storage: hard disk, optical disk, flash memory, etc.

• Transmission: bandwitdh and/or time.

• Processing: main memory, cache memory.

Data compression can reduce the cost of dealing with data or enable things
that would not otherwise be possible with available resources.

In addition, data compression has connections to machine learning and data
mining, for example, in MDL (Minimum Description Length) principle.

2

Compressed data is often useful only for storage and transmission and needs
to be decompressed before doing anything else with it.

• Compression (encoding) is the process of transforming the original
(uncompressed) data into compressed data.

• Decompression (decoding) is the reverse process of recovering the
original data from the compressed data.

Compression and decompression are often performed by different parties and
one must be aware of what information apart from the compressed data is
available to both parties. It is often helpful to think compression as
communication with the compressed data as the message to be sent.

A recent trend are compressed data structures that support certain
operations on the data without decompression.

• Typically, they need more space than fully compressed data but much
less space than a corresponding uncompressed data structure.

• The operations are usually slower than on the uncompressed data
structure.

3

There are two broad types of compression:

• Lossy compression throws away some information. The data produced
by decompression is similar but not an exact copy of the original data.

– Very effective with image, video and audio compression.

– Removes unessential information such as noise and undetectable
details.

– Throwing away more information improves compression but reduces
the quality of the data.

• Lossless compression keeps all information. The data produced by
decompression is an exact copy of the original data.

– Removes redundant data, i.e., data that can be reconstructed from
the data that is kept.

– Statistical techniques: minimize the average amount of data.

4

Bit is the basic unit of information or size of data or computer storage.
International Electrotechnical Commission (IEC) recommends:

• Bit is abbreviated bit. The abbreviation b is best avoided to prevent
confusion with B, which stands for byte (8 bits).

• The prefixes kilo (k), mega (M), giga (G), etc. refer to powers of 10.
The corresponding binary prefixes referring to powers of two are called
kibi (Ki), mebi (Mi), gibi (Gi), etc.. (Note that the abbreviation for kibi
is capitalized but the one for kilo is not.)

For example, 8 kbit means 8000 bits and 1 KiB means 8192 bits.

The level of compression is usually expressed in one the following ways.

• Compression ratio is c/u, where c is the size of the compressed data
and u is the size of the original, uncompressed data.

• Bit rate is the average number of bits per some basic unit of data, such
as bits per character for text or bits per second for audio.

For example, a bit rate of 3 bits/character on standard ASCII text means
compression ratio 3/8 = 37.5 %.

5

About this course

• This course covers only lossless compression techniques. Lossy
compression techniques are quite specific to the type of data and often
rely on a deep understanding of human senses.

• The focus is on text compression. However, many of the basic
techniques and principles are general and applicable to other types of
data.

• The course concentrates on practical algorithms and techniques. Some
key concepts of information theory, the mathematical basis of data
compression, will be introduced but not covered in detail.

6

1. Variable-length encoding

Definition 1.1: Let Σ be the source alphabet and Γ the code alphabet. A
code is defined by an injective mapping

C : Σ→ Γ∗

The code is extended to sequences over Σ by concatenation:

C : Σ∗ → Γ∗ : s1s2 . . . sn 7→ C(s1)C(s2) . . . C(sn)

• We will usually assume that Γ is the binary alphabet {0,1}. Then the
code is called a binary code.

• Σ is an arbitrary set, possibly even an infinite set such as the set of
natural numbers.

7

Example 1.2: Morse code is a type of variable length code.

8

Let us construct a binary code based on Morse code.

First attempt: Use zero for dot and one for dash.

A 7→ 01 B 7→ 1000 C 7→ 1010 D 7→ 100 . . .

However, when applied to sequences, we have a problem:

CAT 7→ 1010011 KIM 7→ 1010011 TETEETT 7→ 1010011 . . .

The problem is that the code has no representation for the longer spaces
between letters.

• The code would work if we had some kind of a delimiter to separate
letters from each other, but the codes we are interested in here do not
support such delimiters. They are sometimes called self-delimiting
codes.

• If all the letter codes had the same length, there would be no need for
a delimiter. The ASCII code is an example of such a fixed-length code.
However, here we are more interested in variable-length codes.

9

The kind of code we need can be formalized as follows.

Definition 1.3: A code C : Σ→ Γ∗ is uniquely decodable if for all S, T ∈ Σ∗,
S 6= T implies C(S) 6= C(T).

Determining whether a code is uniquely decodable is not always easy. Also,
unique decodability does not necessarily mean that decoding is easy.
However, there are easily recognizable and decodable subclasses:

• A fixed-length code that maps every source symbol to a code sequence
of the same length is always uniquely decodable.

• A much larger subclass are prefix codes.

Definition 1.4: A code C : Σ→ Γ∗ is a prefix code if for all a, b ∈ Σ, a 6= b
implies that C(a) is not a prefix of C(b).

Theorem 1.5: Every prefix code is uniquely decodable.

Proof. Exercise.

10

Let us return to the Morse code example and define a binary prefix code
based on the Morse code:

• Encode dots and dashes with ones and the spaces with zeros.

• The number of zeros and ones represents the length in time: dot is a
single one, dash is three ones, etc..

• The space between letters is included in the code for the preceding
letter.

A 7→ 10111000 B 7→ 111010101000 C 7→ 11101011101000 . . .

CAB 7→ 1110101110100010111000111010101000

In any encoded sequence, three consecutive zeros always marks the end of a
symbol code, acting as a kind of a delimiter and ensuring that the code is a
prefix code.

11

The code on the previous slide is not ideal for compression because the
encoded sequences tend to be quite long.

A straightforward optimization is to use two ones for a dash and two zeros
for a long space.

A 7→ 101100 B 7→ 1101010100 C 7→ 11010110100 . . .

CAB 7→ 110101101001011001101010100

The unnecessarily long codes are a form of redundancy.

• Removing redundancy is one way to achieve compression.

• In the original Morse code, the length of dashes and long spaces is a
compromise between compression (for faster transmission) and avoiding
errors.

• Some amount of redundancy is necessary if we want to be able to
detect and correct errors. However, such error-correcting codes are not
covered on this cause.

12

Huffman coding

Let P be a probability distribution over the source alphabet Σ. We want to
find a binary prefix code C for Σ that minimizes the average code length∑

a∈Σ

P (a)|C(a)|

Such a code is called optimal.

The probability distribution P may come from

• a probabilistic model of the data

• a statistical study of the type of data (for example, letter frequencies in
English)

• actual symbol frequencies in the data to be encoded.

If the probability distribution is known to the decoder, the decoder can
construct the code the same way the encoder does. Otherwise, the code (or
the distribution) must be included as part of the compressed data.

We assume that all probabilities are positive. A symbol with a zero
probability should be removed from the alphabet.

13

Intuitively, to minimize the average code length, we should use shorter
codes for more frequent symbols and longer codes for rare symbols.

• Morse code has this property. The shortest codes are assigned to the
most frequent letters in English.

This principle is easy show formally.

• Let a, b ∈ Σ be two symbols that violate the principle, i.e., satisfy
P (a) < P (b) and |C(a)| < |C(b)|.

• We can correct the violation by swapping the codes of a and b. The
resulting the change in the average code length is

P (a)(|C(b)| − |C(a)|) + P (b)(|C(a)| − |C(b)|)
= −(P (b)− P (a))(|C(b)| − |C(a)|) < 0

• Thus we can reduce the average code length for any code that violates
the principle.

14

An optimal code can be computed with the Huffman algorithm.

Algorithm 1.6: Huffman
Input: Probability distribution P over Σ = {s1, s2, . . . , sσ}
Output: Optimal binary prefix code C for Σ

(1) for s ∈ Σ do C(s)← ε
(2) T ←

{
{s1}, {s1}, . . . , {sσ}

}
(3) while |T | > 1 do
(4) Let A ∈ T be the set that minimizes P (A) =

∑
s∈A P (s)

(5) T ← T \ {A}
(6) for s ∈ A do C(s)← 1C(s)
(7) Let B ∈ T be the set that minimizes P (B) =

∑
s∈B P (s)

(8) T ← T \ {B}
(9) for s ∈ B do C(s)← 0C(s)

(10) T ← T ∪ {A ∪B}
(11) return C

15

Example 1.7: Huffman algorithm

P ({e}) = 0.3 P ({e}) = 0.3 P ({e}) = 0.3 P ({a, o}) = 0.4
P ({a}) = 0.2 P ({a}) = 0.2 P ({i, u, y}) = 0.3 P ({e}) = 0.3
P ({o}) = 0.2 P ({o}) = 0.2 P ({a}) = 0.2 P ({i, u, y}) = 0.3
P ({i}) = 0.1 P ({u, y}) = 0.2 P ({o}) = 0.2
P ({u}) = 0.1 P ({i}) = 0.1
P ({y}) = 0.1

P ({e, i, u, y}) = 0.6 P ({e, a, o, i, u, y}) = 1.0
P ({a, o}) = 0.4

Huffman code

C(a) = 10
C(e) = 00
C(i) = 011
C(o) = 11
C(u) = 0100
C(y) = 0101

Huffman tree

u y

i

e a o

1.0

0.6

0.3

0.2

0.3

0.1 0.1

0.1

0.2 0.2

0.4

16

• The collection of sets T can be implement using a priority queue so
that the minimum elements are found quickly. The total number of
operations on T is O(σ) and each operation needs O(logσ) time. Thus
the time complexity is O(σ logσ).

• The resulting code is often called Huffman code. The time complexity
of constructing the code (lines (6) and (9)) is linear in the total length
of the codes.

• The code can be represented as a trie of O(σ) nodes known as the
Huffman tree. When constructing the tree, lines (6) and (9) can be
replaced with a constant time operation that creates a new node and
adds two trees as its children. Thus the trie representation can be
constructed O(σ) time.

17

Let us prove the optimality of the Huffman code.

Lemma 1.8: Let Σ = {s1, s2, . . . , sσ−1, sσ} be an alphabet with a probability
distribution P satisfying P (s1) ≥ P (s2) ≥ · · · ≥ P (sσ−1) ≥ P (sσ) > 0. Then
there exists an optimal binary prefix code C satisfying

• No code C(si) is longer than C(sσ).

• C(sσ−1) is the same as C(sσ) except that the last bit is different.

Proof. Let C be an optimal binary prefix code that does not satisfy the
conditions. We show that it can be modified to satisfy the conditions.

• If some code C(si) is longer than C(sσ), we can swap the codes C(si)
and C(sσ) without increasing the average code length.

• W.l.o.g., assume that C(sσ) = B1 for some bit string B. If there were
no symbol with a code B0, then we could set C(sσ) = B without
violating the prefix condition. This would reduce the average code
length, which contradicts the assumption that C is optimal.

• Thus C(sj) = B0 for some sj 6= sσ. If sj 6= sσ−1, we can swap the codes
C(sj) and C(sσ−1) without increasing the average code length.

�

18

Lemma 1.9: Let Σ = {s1, s2, . . . , sσ−1, sσ} be an alphabet with a probability
distribution P satisfying P (s1) ≥ P (s2) ≥ · · · ≥ P (sσ−1) ≥ P (sσ) > 0.
Let Σ′ = {s1, s2, . . . , sσ−2, s′} with a probability distribution P ′ such that
P ′(s′) = P (sσ−1) + P (sσ) and P ′(s) = P (s) for other s.
Let C ′ be an optimal binary prefix code for Σ′. Let C be a code for Σ such
that C(sσ−1) = C ′(s′)0, C(sσ) = C ′(s′)1, and C(s) = C ′(s) for other s.
Then C is an optimal binary prefix code for Σ.

Proof. C is clearly a binary prefix code. Suppose C is not optimal, i.e.,
there exists a code D with a smaller average code length.

• By Lemma 1.8, we can assume that D(sσ−1) = B0, D(sσ) = B1 for
some bit string B. Thus we can construct a prefix code D′ for Σ′ by
setting D′(s′) = B and D′(s) = D(s) for other s.

• Let L, L′, K and K ′ be the average code lengths of the codes C, C ′, D
and D′, respectively. Then

L− L′ = P ′(s′) = K −K ′

and thus

K ′ = L′ − (L−K) < L′

which contradicts C ′ being optimal.

�

19

Theorem 1.10: The Huffman algorithm computes an optimal binary prefix
code.

Proof. Each iteration of the main loop of the Huffman algorithm performs
an operation that is essentially identical to the operation in Lemma 1.9:
remove the two symbols/sets with the lowest probability and add a new
symbol/set representing the combination of the removed symbols/sets.
Lemma 1.9 shows that each iteration computes the optimal code provided
that the following iterations compute the optimal code. Since the code in
the last iteration is trivially optimal, the algorithm computes the optimal
code.

�

20

