Entropy

As we have seen, the codeword lengths 45, s € >, of a complete prefix code
for an alphabet X satisfy) 2% = 1. Thus the prefix code defines a
probability distribution over >_:

P(s) =27% for all s€ X.
Conversely, we can convert probabilities into codeword lengths:
¢s = —log P(s) for all s € 2.

For an arbitrary distribution, these codeword lengths are generally not
integral and do not represent an actual prefix code. However, we can use
these lengths to compute the average code length. The resulting quantity is
called the entropy of the distribution.

Definition 1.24: Let P be a probability distribution over an alphabet *.
The entropy of P is

H(P) = —) P(s)log P(s).

sEX
The quantity —log P(s) is called the self-information of the symbol s.

32

The concept of (information theoretic) entropy was introduced in 1948 by
Claude Shannon in his paper “A Mathematical Theory of Communication”
that established the discipline of information theory. From that paper is also
the following result.

Theorem 1.25: (Noiseless Coding Theorem) Let C be an optimal prefix
code for an alphabet > with the probability distribution P. Then

H(P) <) P(s)|C(s)| < H(P)+ 1.

s€E2

The same paper contains the Noisy-channel Coding Theorem that deals
with coding in the presence of error.

The entropy is an absolute lower bound on compressibility in the average
sense. Because of integral code lengths, a prefix codes may not quite match
the lower bound, but the upper bound shows that they can get fairly close.
We will later see how to get even closer, but it is never possible to get
below entropy.

33

Example 1.26: Continuing example 1.7, we get

symbol a e
probability | 0.2 0.3
self-information | 2.32 1.74

Huffman codeword length 2 2

| o) u y
0.1 0.2 0.1 0.1
3.32 2.32 3.32 3.32

3 2 4 4

H(P) ~ 2.45 while the average Huffman code length is 2.5.

One can prove tighter upper bounds on the average Huffman code length in
terms of the maximum probability pmax of any symbol: H(P) 4+ pmax + 0.086

The case when pmax is close to 1, represents the worst case for prefix
coding, because then the self-information —log pmax iS much less than 1, but

a codeword can never be shorter than 1.
Example 1.27:

symbol

probability
self-information

Huffman codeword length

a b
0.99 0.01
0.014 6.64

1 1

H(P) ~ 0.081 while the average Huffman code length is 1. The Huffman
code is more than 10 times longer than the entropy.

34

We will next prove the Noiseless Coding Theorem. The proof uses the
following result.

Lemma 1.28: (Gibbs' inequality) For any two probability distributions P
and (@) over >

H(P)= -} P(s)log P(s) <~} P(s)1ogQ(s).

sE> sE2
with equality if only if P = Q.

Proof. Since Inx <x —1 for all z > 0,

S P()IN(Q(s)/P(s)) < 3 P()(Q(s)/P(s) = 1) =3 Q(s) = 3 P(s) = 0.

seE2 SEX seEX SEX
Dividing both sides by In2, we can change In into log. Then
Y P(s)logQ(s) — Y P(s)log P(s) = Y P(s)1og(Q(s)/P(s)) < 0.
sE> sE2 sE2X
Rearrenging the terms, we get the inequality in the lemma.

Sincelnz =x—1 if and only if x = 1, all the inequalities above are equalities
if and only if P=Q).
[]

35

Proof of Theorem 1.24 (Noiseless Coding Theorem). Let us prove the

upper bound first. For all s € X, let ¢/, = [—1log P(s)]. Then
IEXEDSELICED WIOES
SEX seX seX

and by Kraft's inequality, there exists a prefix code with codeword length /4,
for each s € > (known as Shannon code). The average code length of this
code is

D P(s)ta=7) P(s)[-log P(s)] <) P(s)(~log P(s) + 1) = H(P) + 1.

SE> SEX sE>

Now we prove the lower bound. Let C be an optimal prefix code with
codeword length ¢5 for each s € >. By Corollary 1.15, we can assume that C
iIS complete, i.e., ZSEZ 2-6t = 1. Define a distribution () by setting

Q(s) = 27%. By Gibbs' inequality, the average code length of C satisfies
Y P(s)ls =) P(s)(—log(27*)) = =) P(s)log(Q(s)) > H(P).

sE> sE> sE>
L]

36

Arithmetic coding

Arithmetic coding can be seen as prefix coding with fractional code lengths,
or as prefix coding of strings instead of symbols. Arithmetic coding can get
below the average code length of Huffman coding and arbitrarily close to
the entropy.

Let > = {s1,s2,...,8,} be an alphabet with an ordering s;1 < sp < -+ < $g.
Let P be a probability distribution over > and define the cumulative
distribution F' as

F(s;) = i:P(sj) forall ¢ € [1,...,0]
j=1

We associate a symbol s; with the interval [F(s;) — P(s;), F(s;)).

Example 1.29: symbol a b c
probability 0.2 0.5 0.3
interval | [0,0.2) [0.2,0.7) [0.7,1.0)

37

We can extend the interval representation from symbols to strings. For any
n > 1, define a probability distribution P, and a cumulative distribution Fj,
over 2", the set of strings of length n, as

Pu(X) =[] P
=1
F(X)= Y P()

YernY<X

for any X = z1z2... 2, € 2™, Where Y < X uses the lexicographical ordering
of strings. The interval for X is [F,(X) — P,(X), F,(X)).

The interval can be computed incrementally.

Input: string X = x1x2...x2, € 2™ and distributions P and F' over 2.
Output: interval [I,7) for X.
(1) [I,r) + [0.0,1.0)
(2) fori=1 to n do
(3) ' < F(x;); ! < 1" — P(x;) // [U,r") is interval for x;
(4) p—r—Ull<—1l+p-U;r<1l+p-r
(5) return [I,r)

338

Example 1.30: Continuing Example 1.29, the interval for the string cab is
computed as follows:

symbol a b c
probability 0.2 0.5 0.3
interval | [0,0.2) [0.2,0.7) [0.7,1.0)
string ca cb cc
probability 0.06 0.15 0.09
interval | [0.7,0.76) [0.76,0.91) [0.91,1.0)
string caa cab cac
probability 0.012 0.03 0.018

interval | [0.7,0.712) [0.712,0.742) [0.742,0.76)

39

We will similarly associate intervals to sequences over the code alphabet
{0, 1} using the uniform distribution. The interval for a binary string
B € {0, 1}5 is

o0 L
where val(B) is the value of B as a binary number.

val(B) val(B) + 1)

e This is the same relation between binary strings and dyadic intervals
that we already saw in the proof of Kraft's inequality. Recall that a set
of binary strings forms a prefix code if and only if their intervals do not
overlap each other.

e The interval for B contains exactly the numbers whose representation
in binary begins with B (after “.”). In fact, in the literature, arithmetic
coding is usually described using binary fractions instead of intervals.

Example 1.31: For B =101110, val(B) = 46 and thus the interval is

46 A7
— =) =1[.71875,.734375) = [.101110,.101111).
64’ 64

40

The missing step of arithmetic encoding is to connect source alphabet
intervals with code alphabet intervals. There are a few different ways to do
this. Our solution is to map a source interval [I,r) into the largest dyadic
interval that is completely contained in [I,7).

Now we have the full encoding procedure:
source string — source interval — code interval — code string

Example 1.32: The string cab is encoded as 101110:
cab — [.712,.742) — [.71875,.734375) = [.101110,.101111) ~— 101110

The mapping from source intervals to code intervals ensures that the code
intervals do not overlap. Therefore, we have a prefix code for >".

The prefix code is usually not optimal or even complete, because there are
gaps between the code intervals. However, the length of the code interval
for a source interval of length p is always more than p/4. Thus the code
length for a string X is less than —log P,(X) + 2, and the average code
length is less than H(P,) + 2.

41

