
LZ77

The original LZ77 algorithm works as follows:

• A phrase Tj starting at a position i is encoded as a triple of the form
〈distance, length, symbol〉. A triple 〈d, l, s〉 means that:

Tj = T [i...i+ l] = T [i− d...i− d+ l)s

In other words, the string T [i..i+ l) of length l has another occurrence
d positions earlier in the text. A decoder can simply copy the string
from the already decoded part of the text.

• The values d and l should satisfy d ∈ [1..dmax] and l ∈ [0..lmax]. In other
words, the earlier occurrence should be no longer than lmax and should
start within a window T [i− dmax..i− 1]. If l > d, the strings T [i..i+ l)
and T [i− d...i− d+ l) overlap, which makes the phrase self-referential.

• The algorithm searches the window for the longest possible match
under the above contraints, i.e., it tries to maximize l.

• The triple is encoded with fixed length codes using
dlog dmaxe+ dlog(lmax + 1)e+ dlogσe bits.

Example 2.10: Let T = badadadabaab and assume dmax and lmax are large.
phrase b a d adadab aa b

encoding 〈0,0, b〉 〈0,0, a〉 〈0,0, d〉 〈2,5, b〉 〈2,1, a〉 〈0,0, b〉
78



Later variants have improved the encoding of the phrases:

• As with LZ78, having the extra symbol at the end of each phrase is
wasteful, but there must still be a way to encode symbols that do not
occur in the window. A common solution is to have two types of codes:
〈length,distance〉 and 〈symbol〉. The second type of code may also be
the more efficient code for a phrase of length one even if it occurs in
the window.

• Use variable length codes instead of fixed length codes. For example,
we could use a semiadaptive Huffman code with some codewords
representing symbols and others representing lengths. A length is
always followed by a distance encoded using Golomb–Rice code. The
most advanced compressors can further have a complex model to
estimate the probability of each bit in the encoding and then use
arithmetic coding to encode them.

Many popular compression programs, such as zip, gzip and 7zip, use this
types of LZ77 variants.

79



Another way to optimize LZ77 is to replace the exhaustive search of the
window with an efficient data structure.

• Many different data structures including binary trees, hash tables and
suffix trees have been used for the purpose.

• Fast searching enables larger window sizes or even unbounded distances
and lengths. Increasing the window size can lead to longer phrases and
thus better compression.

• On the other hand, the compression can suffer from longer codes
needed for larger values. With the fixed length codes of the original
LZ77, this is another reason to use a small window. With variable
length codes, a small upper bound is not important, but a smaller
distance has a shorter code. Thus the longest possible phrase is not
always the optimal choice.

• A recent algorithm by Ferragina, Nitto and Venturini (SODA 2009)
solves this optimization problem efficiently for many encoding schemes,
i.e., it finds the parsing that minimizes the total length of the final
encoding.

80



LZFG

As the final LZ-type compression method let us briefly look at LZFG that is
a kind of hybrid of LZ77 and LZ78 algorithms:

• LZFG is like LZ77 but with the restriction that the earlier occurrence of
each phrase has to begin at a previous phrase boundary. There is no
restriction on the end of the phrase.

• Each phrase is encoded as a 〈length,distance〉 pair, but the distance is
now measured in phrases not symbols. The positions of all phrase
boundaries are recorded in a separate array and the distance values
point to this array rather than directly to the text. In this sense, LZFG
is an LZ78 type method.

• Using a large or unbounded window size is easier with LZFG than with
LZ77, because the distance values are smaller and the data structures
for finding phrases are simpler.

Example 2.11: Let T = badadadabaab. Assume two types of codes,
〈length,distance〉 and 〈symbol〉, and no length or distance limits.

phrase b a d adada ba a b
encoding 〈b〉 〈a〉 〈d〉 〈5,2〉 〈2,4〉 〈a〉 〈b〉

81



An important attribute of Lempel–Ziv compression methods is the size of
their effective dictionary, i.e, the number of possible distinct phrases. For a
text of length n with a parsing of size z, the effective dictionary sizes are
bounded by:

LZ78 LZW LZ77 (original) LZ77 (variant) LZFG
(z + 1)σ σ + z dmax(lmax + 1)σ n2 + σ zn+ σ

In general, the effective dictionary size of LZ78 type algorithms grows slowly
with n, while LZ77 type algoritms can have a much faster growth rate.

• A larger dictionary usually leads to longer and thus fewer phrases. This
does not necessarily mean better compression, because the code sizes
increase too, but fewer phrases can speed up decoding.

• A faster dictionary growth rate can improve compression significantly
on some highly compressible texts (exercise).

82



Grammar compression

A special type of semiadaptive dictionary compression is grammar
compression that represents a text as a context-free grammar.

Example 2.12: T = a rose is a rose is a rose.

S → ABB

A→ a rose

B → is A

The grammar should generate exactly one string. Such a grammar is called
a straight-line grammar because of the following properties:

• The are no branches, i.e., each non-terminal is the left-hand size of
only one rule. Otherwise, multiple strings could be generated.

• There are no loops, i.e., no cyclic dependencies between non-terminals.
Otherwise, infinite strings could be generated.

A straight-line grammar in Chomsky normal form is called a straight-line
program.

83



The size of a grammar is the total length of the right-hand sides. The
smallest grammar problem of computing the smallest straight-line grammar
that generates a given string is NP hard. Nevertheless, there are many
algorithms for constructing small grammars for a text, for example:

• LZ78 parsing is easily transformed into a grammar with one rule for
each phrase.

• The best approximation ratio O(log(n/g)), where g is the size of the
smallest grammar, has been achieved by algorithms that transform an
LZ77 parsing into a grammar.

• Greedy algorithms add one rule at a time as long as they can find a rule
that reduces the size of the grammar. The right hand side of each new
rule is chosen greedily by some criterion, for example:

– the longest substring with at least two occurrences

– the most frequent substring of length at least two

– the string that produces the biggest reduction in size.

84



Re-Pair

Re-Pair is a greedy grammar compression algorithm that operates as follows:

1. Find the pair of symbols XY that is the most frequent in the text T . If
no pair occurs twice in T , stop.

2. Create a new non-terminal Z and add the rule Z → XY to the
grammar. Replace all occurrences of XY in T by Z. Go to step 1.

The whole process can be performed in linear time using suitable data
structures. The details are omitted, but the key observation is that, if nXY
is the number of occurrences of the most frequent pair XY in a given step,
then the replacement reduces the size of the grammar by nXY − 2. Thus we
can spend O(nXY ) time to perform the step.

Here is a simple encoding of the final result:

• The number r of rules and the length z of the compressed text in γ
code.

• The right-hand sides of rules using dlog(σ + i− 1)e-bit fixed length
codes to encode the ith rule.

• The compressed text using dlog(σ + r)e-bit fixed length codes.

Better compression can be achieved with a more sophisticated encoding.

85



Example 2.13: T = singing do wah diddy diddy dum diddy do.

rule added text after replacement
A→ d singingAo wahAiddyAiddyAumAiddyAo
B → dd singingAo wahAiByAiByAumAiByAo
C → Ai singingAo wahCByCByAumCByAo
D → By singingAo wahCDCDAumCDAo
E → CD singingAo wahEEAumEAo
F → in sFgFgAo wahEEAumEAo
G→ Ao sFgFgG wahEEAumEG
H → Fg sHHG wahEEAumEG

86



A common feature of most dictionary compression algorithms is asymmetry
of compression and decompression:

• The compressor needs to do a lot of work in choosing the phrases or
rules.

• The decompressor only needs to replace each phrase.

Thus the decompressor is often simple and fast.

• LZ77-type methods are particularly simple and fast as they have no
dictionary other than the already decoded part of the text.

• LZ78-type and grammar-based methods need some extra effort in
constructing and accessing the dictionary.

The best possible compression may require a complex model and arithmetic
coding to encode the phrase, which can make the decoder dramatically
slower. Thus many implementations are optimized more for speed than
maximum compression.

87


