
Summary

We have seen text compression techniques from three broad categories:

• Context-based compression
− Slow compression and decompression, because they require a

complex model for good compression.
+ Highest compression rates because of the best entropy models.

Models are easy to tune as they operate directly on the text.

• Dictionary compression
+ Very fast and simple decompression.
− Often not the best compression. Better compression would require

better entropy models on phrases, which are less intuive. Besides
complex models could destroy the main advantage.

• Burrows-Wheeler compression
+ Fairly fast and simple decompression.
+ Good compression with relatively simple models.
− Fairly complex and slow BW transform algorithm.

101

Definition 2.25: A text compression algorithm is called coarsely optimal if
the compressed size of a text T of length n over an alphabet of size σ is
bounded by

nHk(T) + o(n logσ)

for any k = o(logσ n).

Many algorithms in each of the three categories can be shown to be
coarsely optimal. Algorithms that are not include:

• LZ77 with constant window size.

• Context-based and Burrows-Wheeler compressors that use Huffman
coding or constant precision arithmetic coding. (On the other hand,
logn bit precision is enough.)

• For Re-Pair a weaker bound, 2nHk(T) + o(n logσ), has been proven.

Coarse optimality has its limitations as a measure of compression:

• Coarse optimality implies a certain kind of optimality in the limit, i.e.,
for large enough n, but there is no bound on what is large enough.

• Coarse optimality does not guarantee good compression of highly
compressible texts.

102

3. Compressed Data Structures

A data structure is a method of storing data in a form that supports efficient
execution of certain kinds of operations on the data. Often additional
functionality is achieved by storing additional data such as pointers.

In data compression, the goal is to reduce the amount of stored data, often
at the cost of reduced functionality. Indeed, most compression methods are
designed to support only one operation on the compressed data:
decompression.

In this section, we will see how one can

• add functionality with minimal addition of data

• compress data without losing functionality.

Compressed data structures are often slower than uncompressed ones, but if
compression helps the data to fit in a faster memory, it can speed up
algorithms.

103

Bit vectors

The work horse of compressed data structures is the bit vector. Let B[0..u)
be a bit vector with n 1-bits and u− n 0-bits. A basic operation on B is

accessB(i) = B[i].

Using a standard representation of bitvectors, this is a trivially constant time
operation.

We can compress B close to uH0(B) bits using arithmetic coding with
probability n/u for 1’s and (u− n)/u for 0’s, but then accessB(i) cannot be
implemented efficiently.

We will see in a moment that there are other ways of compressing B that
support fast, even constant time access.

104

Rank and select

Two useful operations on bit vectors are

rank-1B(i) = |{j ∈ [0..i) | B[j] = 1}| for i ∈ [0..u]

select-1B(j) = max{i ∈ [0..n] | rank-1B(i) = j} for j ∈ [0..n]

select-1B(j) is the position of the (j + 1)st 1-bit. Note also that

rank-1B(select-1B(j)) = j.

Sometime we also need rank-0 and select-0 defined symmetrically.

Example 3.1: i 0 1 2 3 4 5 6 7
B[i] 0 1 1 1 0 0 0

rank-1B(i) 0 0 1 2 3 3 3 3
rank-0B(i) 0 1 1 1 1 2 3 4

select-1B(i) 1 2 3 7
select-0B(i) 0 4 5 6 7

105

Applications of rank and select

Before showing, how to implement rank and select operations, let us see
some of their applications.

Set of integers. Let S be a set of n integers from the universe U = [0..u).
We can represent S using its characteristic bit vector 1S[0..u) defined as

1S[i] =

{
1 if i ∈ S
0 if i 6∈ S

Using this representation, we can implement basic operations on S:

containsS(i) = access1S
(i)

rankS(i) = rank-11S
(i) = |S ∩ [0..i)|

selectS(j) = select-11S
(j)

Example 3.2: If S = {1,2,3} ⊆ [0..7), then 1S = 0111000.

106

Sparse array. Let A[0..u) be an array of arbitrary element type, where u− n
entries contain a null value. We can implement A using a bit vector 1A[0..u)
and an array A′[0..n) as follows:

1A[i] =

{
1 if A[i] is non-null
0 if A[i] is null

A′[j] = A[select-11a
(j)]

Then

A[i] =

{
A′[rank-11A

(i)] if access1A
(i) = 1

null if access1A
(i) = 0

107

Searchable prefix sums (searchable partial sums). Let L[0..n) be a
sequence of n positive integers summing up to u. (In the exercises, this
result is extended to non-negative integers.)

We want to have the following operations on L:

sumL(j) =
∑

i∈[0..j)

L[i] for j ∈ [0..n]

searchL(i) = max{j ∈ [0..n] | sumL(j) ≤ i} for i ∈ [0..u]

We can implement L using a bit vector BL[0..u) as follows:

BL[i] =

{
1 if sumL(j) = i for some j
0 otherwise

Then

sumL(j) = select-1BL
(j)

searchL(i) = rank-1BL
(i+ 1)− 1

108

Random access to variable length encoding. Let T [0..n) be a text over
an alphabet Σ. Let C be variable length binary code for Σ and let
u = |C(T)| be the length of the code for T .

We want to store the encoded representation C(T) but still support fast
access to any symbol. For this we need the operation posC(T)(j) that
returns the position of the first bit of the code for T [j]. Then

C(T [j]) = C(T)
[
posC(T)(j)...posC(T)(j + 1)

)
and we can quickly decode T [j].

The pos operation can be implemented using searchable prefix sum data
structure for the sequence L[0..n) defined as

L[j] = |C(T [j])|.
Then

posC(T)(j) = sumL(j).

The reverse mapping from a position in C(T) to a position in T can be
implemented using searchL.

109

Succinct rank

Now we will see how to implement rank and select operations on a bit
vector B[0..u). Let us start with rank-1. We will describe a data structure
that consists of B itself and additional data of o(u) bits. Such a data
structure using a sublinear amount of additional space is called succinct.

There are two trivial implementations of rank-1:

• Store an array R[0..u] with R[i] = rank-1B(i). This supports constant
time rank-1 but needs Ω(u logn) bits of space.

• Store only B using u bits. To compute rank-1B(i) we have to scan
B[0..i) (or B[i..u)) and count bits.

We can speed up bit counting using the fact that one machine word
contains multiple bits:

• Store the bit counts for all combinations of (logu)/2 bits into a lookup
table of 2(logu)/2 = O(

√
u) entries and O(

√
u log logu) bits. Then a scan

of k bits can be performed in O(1 + k/ logu) time.

• In practice, it is better to do bit counting using hardware instructions if
available or certain bit tricks.

110

We can combine the trivial solutions as follows:

• Divide B into blocks of size b. For simplicity, assume that u is a
multiple of b. Then the blocks are Bi = B[ib..(i+ 1)b), i ∈ [0..n/b).

• Store ranks at the the block boundaries in an array R[0..n/b]:
R[i] = rank-1B(ib).

• Then

rank-1B[i] = R[k] + bitcount(B[kb...i))

where k = bi/bc. The bit count term is computed by scanning using
lookup table of O(

√
u log logu) bits.

This solution needs O((u logu)/b+
√
u log logu) bits in addition to B and

supports rank queries in O(1 + b/ logu) time. The choice of b gives us a
space–time tradeoff. For example:

b additional space time
logu O(u) bits O(1)

(logu)2 O(u/ logu) bits O(logu)

111

For the final solution, we use two levels of blocks:

• The superblock size is b1 = (logu)2. The ranks at superblock
boundaries are stored in an R1 as before, which needs
O(u/ logu) = o(u) bits.

• Each superblock is divided into blocks of size is b2 = logu. An array R2

stores the ranks relative to the nearest preceding superblock boundary:

R2[i] = rank-1B[ib2]−R1[bib2/b1c].
Using O(log b1) = O(log logu) bits per entry, the array R2 needs
O((u log logu)/ logu) = o(u) bits.

• Then

rank-1B[i] = R1[k1] +R2[k2] + bitcount(B[k2b2...i))

where k1 = bi/b1c and k2 = bi/b2c. The bit count can be computed in
constant time using a lookup table of size O(

√
u log logu) = o(u) bits.

Theorem 3.3: A bit vector B[0..u) can be augmented with a data
structure of O((u log logu)/ logu) = o(u) bits so that rank-1 queries can be
answered in constant time.

112

Succinct select

Now we will see how to implement the select-1 operation on a bit vector
B[0..u) containing n 1-bits.

We have similar basic solutions as with rank-1:

• Store an array S[0..n] with S[j] = select-1B(j). This supports constant
time select-1 using O(n logu) bits. Note that if n = O(u/(logu)2), this
solution already matches the result for rank-1.

• Store just B. To compute select-1B(j), scan B from the beginning until
the number of 1-bits reaches j.

• As with rank-1, we can scan logu bits at a time using a lookup table of
size O(

√
u log logu) bits. Since this optimized scan may overshoot by up

to logu bits, we need another lookup table locate the desired position
within a region of logu bits. This second lookup table has O(

√
u logu)

entries and needs O(
√
u(logu) log logu) bits.

113

As with rank-1, the solution involves two levels of blocks.

• Divide B into n/b1 superblocks B0, B1, . . . , Bn/b1−1 so that each
superblock contains exactly b1 = (logu)2 1-bits. Then

select-1B(j) =
∑

h∈[0..k)

|Bh|+ select-1Bk
(j − kb1)

where k = bj/b1c. We need O((n logu)/b1) = O(n/ logu) bits to store
the prefix sums

∑
h∈[0..k) |Bh| for all k ∈ [0..n/b1].

The implementation of the local select query select-1Bk
(j − kb1) depends on

the size of the superblock Bk:

• If |Bk| ≥ (logu)4, we store an array Sk[0..b1) recording the answers to all
queries using logu bits per entry. The array needs
O(b1 logu) = O((logu)3) bits. Since there are at most O(u/(logu)4)
such superblocks, the total space is O(u/ logu) bits.

• If |Bk| < (logu)4, we divide the superblock into smaller blocks with each
block containing b2 =

√
logu 1-bits. As with superblocks, we need prefix

sums and local select operations. The prefix sum arrays fit into
O((n log logu)/b2) = O(n log logu/

√
logu) bits.

114

The implementation of the local select query on a block B′k depends on the
size of the block:

• If |B′k| ≥ logu, we store all answers in an array S′k[0..b2) of O(b2 log logu)
bits. Since there are at most u/ logu such blocks, the total space is
O(u log logu/

√
logu).

• If |B′k| < logu, we can use lookup tables of size O(
√
u(logu)2) bits to

answer the local select query.

Theorem 3.4: A bit vector B[0..u) can be augmented with a data
structure of O((u log logu)/

√
logu) = o(u) bits so that select-1 queries can

be answered in constant time.

• Practical implementations are similar to the data structures described
above, though they tend to use larger block sizes, since scanning as a
sequential operation is very fast.

115

