
Compressed bit vectors

The rank and select data structures we just saw consists of the bit vector B
of u bits and additional data structures of o(u) bits. To achieve
compression, we can replace B with a compressed representation of B, and
keep the other data structures as is.

• Divide B into blocks of size b = (logu)/2, and consider the result
B0, B1, . . . , Bn/b−1 as sequence of length u/b over an alphabet of size

2b ≈
√
u.

• Encode the sequence of blocks using Huffman coding.

• Add a prefix sum data structure to provide random access to the blocks.

With this representation of B, we can access any block of size b in constant
time, which is sufficient for implementing rank and select as we just saw. In
addition, access queries can be answered in constant time too.

116

Let us analyze the Huffman coded representation.

• Let us assign the probability p = n/u to 1-bits and 1− p to zero bits.
The encoding of B using exact arithmetic coding has size at most
uH0(B) + 2 bits.

• We can extend the probabilities to the blocks: a block of size b with `
1-bits has the probability p`(1− p)b−`. The encoding of the sequence of
blocks using exact arithmetic coding has size at most uH0(B) + 2 bits
too.

• If we replace arithmetic coding with Huffman coding, the size increases
by less than one bit per symbol. For the sequence of blocks, this adds
at most u/b = O(u/ logu) bits.

• If we use the actual frequencies of the blocks, the size of the encoding
can only go down. Thus the Huffman coded sequence of blocks uses at
most uH0(B) +O(u/ logu) bits.

• Using the prefix sums data structure, we can easily find the length of
each code word. Assuming canonical Huffman code, we can then
decode each codeword with a single table lookup. The total size of the
decoding tables is O(

√
u logu).

117

Finally, let us analyze the prefix sum data structure.

• We need to compute prefix sums over the sequence L[0..u/b) of block
code word sizes. As we have seen, this can be implemented with a bit
vector BL of length uH0(B) +O(u/ logu) = O(u) with exactly u/b
1-bits.

• We will only need the sum operation, not the search operation. Thus
we need to implement select-1 over BL.

• Using the simple solution of storing all select values in a table S[0..u/b),
we need O((u/b) logu) = O(u) bits.

• To reduce space, divide BL into blocks so that each block contains logu
1-bits. Since no Huffman code is longer than O(logu), no block is
longer than O((logu)2).

• We can store full select values at the block boundaries using O(u/ logu)
bits. A select value relative to the beginning of the block needs
O(log logu) bits, so we can store all relative select values in
O((u/b) log logu) = O(u(log logu)/ logu) = o(u) bits.

118

Theorem 3.5: A bit vector B[0..u) can be stored in uH0(B) + o(u) bits so
that the operations access, rank-1, select-1, rank-0 and select-0 can be
answered in constant time.

In the data structure we just described, the term o(u) is more precisely
O(u(log logu)/

√
logu), but it can be reduced further:

• The best theoretical result is Patrascu’s Succincter data structure using
uH0(B) +O(u/(logu)k) for any constant k.

• The RRR data structure by Raman, Raman and Rao using
uH0(B) +O(u(log logu)/ logu) bits has been implemented and works
well in practice.

• Some techniques can get below uH0(B) if the bit vector has some
context dependecies, but not much research exists in this direction.

• A special case is select-1 for sparse bit vectors with few 1-bits. The
simple solution of storing all the select values in an array takes just
O(n logu) bits and can be reduced further as we did on the previous
slide. This is not less than uH0(B), but for small n, it is less than the
o(u) term of many data structures.

119

All the data structures use similar techniques:

• Divide data into blocks, superblocks, and sometimes even more levels
of blocks.

• Store data at the block boundaries and handle the smallest blocks with
lookup tables.

Avoiding redundancy is important for minimizing the space:

• The Huffman encoded sequence of blocks contains all the information
of bit vector. All the information in the additional data structures is
fully redundant.

• The best data structures store the bit vector in a form that omits data
that is already in the other data structures.

• It is also common to implement only some of the operations directly
using additional data structures. The other operations can be
implemented through calls to the directly implemented ones (exercise).

120

Rank and select for larger alphabets

Rank and select are useful operations on sequences over larger alphabets
too.

Let S[0..n) be a sequence over an alphabet Σ = [0..σ). Define

accessS(i) = S[i] for i ∈ [0..n)

rankS(c, i) = |{j ∈ [0..i) | S[j] = c}| for c ∈ Σ, i ∈ [0..n]

selectS(c, j) = max{i ∈ [0..n] | rankS(c, i) = j} for c ∈ Σ, j ∈ [0..rankS(c, n)]

Example 3.6:
i 0 1 2 3 4 5 6 7 8 9 10 11

S[i] a b r a c a d a b r a
rankS(a, i) 0 1 1 1 2 2 3 3 4 4 4 5

selectS(a, i) 0 3 5 7 10 11

121

Application: Permutations

A permutation is a bijective mapping π : [0..n)→ [0..n). We can represent
the permutation as a sequence π[0..n): π[i] = π(i). Then π(i) = accessπ(i)
and π−1(i) = selectπ(i,0).

Let S[0..n) be a sequence over an alphabet Σ = [0..σ) such that the
permutation π performs a stable sorting of S. π itself is such a sequence but
not the only one. S may have a smaller alphabet or even be compressible.

Let L[0..σ) be an array, where L[a] is the number of occurrences of a in S.
Then

π(i) = sumL(c) + rankS(c, i) where c = accessS(i)

π−1(i) = selectS(c, i− sumL(c)) where c = searchL(i)

Example 3.7: π 3 7 0 1 4 2 5 6
S b c a a b a b b

a b c
L 3 4 1

π(4) = sumL(b) + rankS(b, i) = 3 + 1 = 4

π−1(4) = selectS(b,4− sumL(b)) = selectS(b,1) = 4

122

Wavelet tree

The most common data structure for large alphabet rank and select is the
wavelet tree.

A wavelet of a sequence S over an alphabet Σ = [0..σ) is defined as follows:

• Let T be a binary tree with σ leaves labelled by the symbols of the
alphabet Σ. For each a ∈ Σ, let C(a) be the binary string representing
the path from the root to the leaf labelled by a. Note that C is a prefix
code, and that for any prefix code there exist the matching binary tree.

• For each node v in T , let Σv be the subset of symbols in the subtree
rooted at v, and let Sv be the subsequence of S consisting of all the
symbols of Σv. In other words, Sv is obtained from S by removing all
symbols that are not in Σv.

• For each internal node v in T , let Bv be a bit vector with the same
lenght as Sv defined as

Bv[i] =

{
0 if Sv[i] is in the left subtree of v
1 if Sv[i] is in the right subtree of v

• The wavelet tree consists of the tree T with the leaf labels, and the bit
vectors Bv processed to support rank and select queries.

123

A different binary tree / prefix code gives a different wavelet tree. The most
common choices are:

• balanced tree / fixed length code

• Huffman tree / Huffman code

Example 3.8: Balanced and Huffman wavelet trees for the string
S = annb$aa.

aaa b nn$

annb$aa
0111000

110
nnb

1011
a$aa

$ a b n

nn

b

aaa

$

0111100
annb$aa

b$
01

nnb$
0011

a

n

$ b

124

Given the wavelet tree of S (what ever the shape of the tree), we can
implement accessS(i) as follows.

WT-access(i)
(1) v ← root; r ← i
(2) while v is not a leaf do
(3) if accessBv

(r) = 0 then
(4) r ← rank-0Bv

(r)
(5) v ← leftchild(v)
(6) else
(7) r ← rank-1Bv

(r)
(8) v ← rightchild(v)
(9) return label of v

• The final value of r is rankS(S[i], i).

The implementations of rank and select are equally simple.

125

WT-rank(c, i)
(1) v ← root; r ← i
(2) while v is not a leaf do
(3) if c is in the left subtree of v then
(4) r ← rank-0Bv

(r)
(5) v ← leftchild(v)
(6) else
(7) r ← rank-1Bv

(r)
(8) v ← rightchild(v)
(9) return i

WT-select(c, i)
(1) v ← leaf representing c; r ← i
(2) while v is not root do
(3) p← parent(v)
(4) if v is in the left child of p then
(5) r ← select-0Bp

(r)
(6) else
(7) r ← select-1Bp

(r)
(8) v ← p
(9) return r

126

Let us analyze the size of the wavelet tree.

• The tree structure, the leaf labels and the pointers to the bit vectors Bv
fit in O(σ logn) bits.

• The contribution of a symbol S[i] to the total length of the bit vectors
is equal to the length of its code word C(S[i]). Thus the total length of
the bit vectors is the same as the length of the code C(S). This is
ndlogσe for the balanced tree and less than n(H0(S) + 1) for the
Huffman tree.

• Adding support for select and rank changes n into n+ o(n), and adds
O(σ logn) bits.

• Compressed representation of the bit vectors reduces the space to
nH0(S) + o(n logσ) +O(σ logn) bits with the balanced tree and to
nH0(S) + o(n(H0(S) + 1)) +O(σ logn) bits with the Huffman tree.

The time complexity of all the operations is proportional to the length of
the code word for the symbol involved. No Huffman code word can be
longer than O(logn).

127

Theorem 3.9: Let S[0..n) be a string over the alphabet [0..σ).

The balanced wavelet tree of S needs

(n+ o(n)) logσ +O(σ logn)

bits using uncompressed bit vectors and

nH0(S) + o(n logσ) +O(σ logn)

bits using compressed bit vectors and supports access, rank and select
queries in O(logσ) time.

The Huffman wavelet tree of S needs

(n+ o(n))(H0(S) + 1) +O(σ logn)

bits using uncompressed bit vectors and

nH0(S) + o(n(H0(S) + 1)) +O(σ logn)

bits using compressed bit vectors and supports access, rank and select
queries in O(logσ) worst case time and in O(H0(S)) average time.

128

