
The standard ordering for strings is the lexicographical order. It is induced
by an order over the alphabet. We will use the same symbols (≤, <, ≥, 6≤,
etc.) for both the alphabet order and the induced lexicographical order. We
define the lexicographical order using the closely related concept of the
longest common prefix.

Definition 1.5: The length of the longest common prefix of two strings
A[0..m) and B[0..n), denoted by lcp(A,B), is the largest integer
` ≤ min{m,n} such that A[0..`) = B[0..`).

Definition 1.6: Let A and B be two strings over an alphabet with a total
order ≤, and let ` = lcp(A,B). Then A is lexicographically smaller than or
equal to B, denoted by A ≤ B, if and only if

1. either |A| = `

2. or |A| > `, |B| > ` and A[`] < B[`].

The preorder of the nodes in a trie is the same as the lexicographical order
of the strings they represent assuming the children of a node are ordered by
the edge labels.

17

The concept of longest common prefixes can be generalized for sets:

Definition 1.7: For a string S and a string set R, define

lcp(S,R) = max{lcp(S, T) | T ∈ R}

lcp(R) =
∑
T∈R

lcp(T,R \ {T})

In the algorithm for inserting S into R (Algorithm 1.3), there are two while
loops. The first loop follows existing edges as long as possible and the
second loop then creates the necessary new nodes and edges. The number
of rounds in the first loop is exactly lcp(S,R). Thus the number of new
nodes and edges added is |S| − lcp(S,R).

Based on this observation, we will next derive an expression for the size of
trie(R). This is not directly based the value lcp(R); we need a more refined
measure.

18

Definition 1.8: Let R = {S1, S2, . . . , Sn} be a set of strings and assume
S1 < S2 < · · · < Sn. Then the LCP array LCPR[1..n] is defined by

LCPR[i] = lcp(Si, {S1, . . . , Si−1}) .
Furthermore, let

L(R) =
∑

i∈[1..n]

LCP [i] .

Example 1.9: Let R = {pot, potato, pottery, tattoo, tempo}. Then L(R) = 7
and the LCP array is:

LCP
0 pot
3 potato
3 pottery
0 tattoo
1 tempo

19

Theorem 1.10: The number of nodes in trie(R) is exactly ||R|| −L(R) + 1,
where ||R|| is the total length of the strings in R.

Proof. Consider the construction of trie(R) by inserting the strings one by
one in the lexicographical order. Initially, the trie has just one node, the
root. As observed earlier, the number of nodes added when inserting Si is
|Si| − LCPR[i]. Summing up, we get the result.

�

The value lcp(R) is perhaps a conceptually simpler measure than L(R). The
following result shows that it is asymptotically equivalent.

Lemma 1.11: L(R) ≤ lcp(R) ≤ 2L(R).

The proof is left as an exercise.

We will later see that the array LCPR is useful as an actual data structure.

20

Compact Trie

Tries suffer from a large number of nodes, Ω(||R||) in the worst case. The
space requirement can be problematic, since typically each node needs much
more space than a single symbol.

Path compacted tries reduce the number of nodes by replacing branchless
path segments with a single edge.

• Leaf path compaction applies this to path segments leading to a leaf.
The number of nodes is now |R|+ lcp(R)− L(R) + 1 (exercise).

• Full path compaction applies this to all path segments. Then every
internal node (except possibly the root) has at least two children. In
such a tree, there is always at least as many leaves as internal nodes.
Thus the number of nodes is at most 2|R|.

The full path compacted trie is called a compact trie.

21

Example 1.12: Path compacted tries for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

tery$

t

empo$
attoo$

ato$

$

o

p

t

tery$

t

empo$
attoo$

ato$

$

pot

The egde labels are factors of the input strings. If the input strings are
stored separately, the edge labels can be represented in constant space using
pointers to the strings.

The time complexity of the basic operations on the compact trie is the
same as for the trie (and depends on the implementation of the child
operation in the same way), but prefix and range queries are faster on the
compact trie (exercise).

22

Ternary Trie

The binary tree implementation of a trie supports ordered alphabets but
awkwardly. Ternary trie is a simpler data structure based on symbol
comparisons.

Ternary trie is like a binary search tree except:

• Each internal node has three children: smaller, equal and larger.

• The branching is based on a single symbol at a given position. The
position is zero (first symbol) at the root and increases along the
middle branches.

Ternary trie has variants similar to σ-ary trie:

• A basic ternary trie is a full representation of the strings.

• Compact ternary tries reduce space by compacting branchless path
segments.

23

Example 1.13: Ternary tries for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

p

o
t

t
t

tt
t

a

a

o
o

o

e

m

p

o
e

r

y

$

$

$

$
$

p

a

ttoo$
empo$

tery$

to$

a

$

t

t

o

p

a

to$

ttoo$
empo$

a

t

$

tery$

ot

Ternary tries have the same asymptotic size as the corresponding tries.

24

A ternary trie is balanced if each left and right subtree contains at most half
of the strings in its parent tree.

• The balance can be maintained by rotations similarly to binary search
trees.

d

D E

b

A B

b

A B

C

d

D E C

rotation

• We can also get reasonably close to balance by inserting the strings in
the tree in a random order.

25

In a balanced ternary trie each step down either

• moves the position forward (middle branch), or

• halves the number of strings remaining in the subtree (side branch).

Thus, in a balanced ternary trie storing n strings, any downward traversal
following a string S passes at most |S| middle edges and at most logn side
edges.

Thus the time complexity of insertion, deletion, lookup and lcp query is
O(|S|+ logn).

In comparison based tries, where the child function is implemented using
binary search trees, the time complexities could be O(|S| logσ), a
multiplicative factor O(logσ) instead of an additive factor O(logn).

Prefix and range queries behave similarly (exercise).

26

String Sorting

Ω(n logn) is a well known lower bound for the number of comparisons
needed for sorting a set of n objects by any comparison based algorithm.
This lower bound holds both in the worst case and in the average case.

There are many algorithms that match the lower bound, i.e., sort using
O(n logn) comparisons (worst or average case). Examples include quicksort,
heapsort and mergesort.

If we use one of these algorithms for sorting a set of n strings, it is clear
that the number of symbol comparisons can be more than O(n logn) in the
worst case. Determining the order of A and B needs at least lcp(A,B)
symbol comparisons and lcp(A,B) can be arbitrarily large in general.

On the other hand, the average number of symbol comparisons for two
random strings is O(1). Does this mean that we can sort a set of random
strings in O(n logn) time using a standard sorting algorithm?

27

The following theorem shows that we cannot achieve O(n logn) symbol
comparisons for any set of strings (when σ = no(1)).

Theorem 1.14: Let A be an algorithm that sorts a set of objects using
only comparisons between the objects. Let R = {S1, S2, . . . , Sn} be a set of n
strings over an ordered alphabet Σ of size σ. Sorting R using A requires
Ω(n logn logσ n) symbol comparisons on average, where the average is taken
over the initial orders of R.

• If σ is considered to be a constant, the lower bound is Ω(n(logn)2).

• Note that the theorem holds for any comparison based sorting
algorithm A and any string set R.

• Only the initial order is random rather than “any”. Any order could be
the correct order, in which case an algorithm that first checks if the
order is correct would need to do only O(n+L(R)) symbol comparisons.

An intuitive explanation for this result is that the comparisons made by a
sorting algorithm are not random. In the later stages, the algorithm tends
to compare strings that are close to each other in lexicographical order and
thus are likely to have long common prefixes.

28

Proof of Theorem 1.14. Let k = b(logσ n)/2c. For any string α ∈ Σk, let
Rα be the set of strings in R having α as a prefix. Let nα = |Rα|.

Let us analyze the number of symbol comparisons when comparing strings
in Rα against each other.

• Each string comparison needs at least k symbol comparisons.

• No comparison between a string in Rα and a string outside Rα gives
any information about the relative order of the strings in Rα.

• Thus A needs to do Ω(nα lognα) string comparisons and Ω(knα lognα)
symbol comparisons to determine the relative order of the strings in Rα.

Thus the total number of symbol comparisons is Ω
(∑

α∈Σk knα lognα
)

and∑
α∈Σk

knα lognα ≥ k(n−
√
n) log

n−
√
n

σk
≥ k(n−

√
n) log(

√
n− 1)

= Ω (kn logn) = Ω (n logn logσ n) .

Here we have used the facts that σk ≤
√
n, that

∑
α∈Σk nα > n− σk ≥ n−

√
n,

and that
∑

α∈Σk nα lognα > (n−
√
n) log((n−

√
n)/σk) (see exercises). �

29

The preceding lower bound does not hold for algorithms specialized for
sorting strings.

Theorem 1.15: Let R = {S1, S2, . . . , Sn} be a set of n strings. Sorting R
into the lexicographical order by any algorithm based on symbol
comparisons requires Ω(L(R) + n logn) symbol comparisons.

Proof. If we are given the strings in the correct order and the job is to
verify that this is indeed so, we need at least L(R) symbol comparisons. No
sorting algorithm could possibly do its job with less symbol comparisons.
This gives a lower bound Ω(L(R)).

On the other hand, the general sorting lower bound Ω(n logn) must hold
here too.

The result follows from combining the two lower bounds. �

• Note that the expected value of L(R) for a random set of n strings is
O(n logσ n). The lower bound then becomes Ω(n logn).

We will next see that there are algorithms that match this lower bound.
Such algorithms can sort a random set of strings in O(n logn) time.

30

String Quicksort (Multikey Quicksort)

Quicksort is one of the fastest general purpose sorting algorithms in
practice.

Here is a variant of quicksort that partitions the input into three parts
instead of the usual two parts.

Algorithm 1.16: TernaryQuicksort(R)

Input: (Multi)set R in arbitrary order.
Output: R in ascending order.

(1) if |R| ≤ 1 then return R
(2) select a pivot x ∈ R
(3) R< ← {s ∈ R | s < x}
(4) R= ← {s ∈ R | s = x}
(5) R> ← {s ∈ R | s > x}
(6) R< ← TernaryQuicksort(R<)
(7) R> ← TernaryQuicksort(R>)
(8) return R< ·R= ·R>

31

In the normal, binary quicksort, we would have two subsets R≤ and R≥, both
of which may contain elements that are equal to the pivot.

• Binary quicksort is slightly faster in practice for sorting sets.

• Ternary quicksort can be faster for sorting multisets with many
duplicate keys (exercise).

The time complexity of both the binary and the ternary quicksort depends
on the selection of the pivot (exercise).

In the following, we assume an optimal pivot selection giving O(n logn)
worst case time complexity.

32

String quicksort is similar to ternary quicksort, but it partitions using a single
character position. String quicksort is also known as multikey quicksort.

Algorithm 1.17: StringQuicksort(R, `)
Input: (Multi)set R of strings and the length ` of their common prefix.
Output: R in ascending lexicographical order.

(1) if |R| ≤ 1 then return R
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) select pivot X ∈ R
(4) R< ← {S ∈ R | S[`] < X[`]}
(5) R= ← {S ∈ R | S[`] = X[`]}
(6) R> ← {S ∈ R | S[`] > X[`]}
(7) R< ← StringQuicksort(R<, `)
(8) R= ← StringQuicksort(R=, `+ 1)
(9) R> ← StringQuicksort(R>, `)

(10) return R⊥ · R< · R= · R>

In the initial call, ` = 0.

33

Example 1.18: A possible partitioning, when ` = 2.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al i gnment
al g orithm
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

Theorem 1.19: String quicksort sorts a set R of n strings in
O(L(R) + n logn) time.

• Thus string quicksort is an optimal symbol comparison based algorithm.

• String quicksort is also fast in practice.

34

Proof of Theorem 1.19. The time complexity is dominated by the symbol
comparisons on lines (4)–(6). We charge the cost of each comparison either
on a single symbol or on a string depending on the result of the comparison:

S[`] = X[`]: Charge the comparison on the symbol S[`].
• Now the string S is placed in the set R=. The recursive call on R=

increases the common prefix length to `+ 1. Thus S[`] cannot be
involved in any future comparison and the total charge on S[`] is 1.

• Only lcp(S,R \ {S}) symbols in S can be involved in these
comparisons. Thus the total number of symbol comparisons
resulting equality is at most lcp(R) = Θ(L(R)).
(Exercise: Show that the number is exactly L(R).)

S[`] 6= X[`]: Charge the comparison on the string S.
• Now the string S is placed in the set R< or R>. The size of either

set is at most |R|/2 assuming an optimal choice of the pivot X.
• Every comparison charged on S halves the size of the set containing
S, and hence the total charge accumulated by S is at most logn.
Thus the total number of symbol comparisons resulting inequality is
at most O(n logn). �

35

Radix Sort

The Ω(n logn) sorting lower bound does not apply to algorithms that use
stronger operations than comparisons. A basic example is counting sort for
sorting integers.

Algorithm 1.20: CountingSort(R)
Input: (Multi)set R = {k1, k2, . . . kn} of integers from the range [0..σ).
Output: R in nondecreasing order in array J[0..n).

(1) for i← 0 to σ − 1 do C[i]← 0
(2) for i← 1 to n do C[ki]← C[ki] + 1
(3) sum← 0
(4) for i← 0 to σ − 1 do // cumulative sums
(5) tmp← C[i]; C[i]← sum; sum← sum+ tmp
(6) for i← 1 to n do // distribute
(7) J[C[ki]]← ki; C[ki]← C[ki] + 1
(8) return J

• The time complexity is O(n+ σ).

• Counting sort is a stable sorting algorithm, i.e., the relative order of
equal elements stays the same.

36

Similarly, the Ω(L(R) + n logn) lower bound does not apply to string sorting
algorithms that use stronger operations than symbol comparisons. Radix
sort is such an algorithm for integer alphabets.

Radix sort was developed for sorting large integers, but it treats an integer
as a string of digits, so it is really a string sorting algorithm (more on this in
the exercises).

There are two types of radix sorting:

MSD radix sort starts sorting from the beginning of strings (most
significant digit).

LSD radix sort starts sorting from the end of strings (least
significant digit).

37

The LSD radix sort algorithm is very simple.

Algorithm 1.21: LSDRadixSort(R)

Input: (Multi)set R = {S1, S2, . . . , Sn} of strings of length m over the alphabet [0..σ).
Output: R in ascending lexicographical order.

(1) for `← m− 1 to 0 do CountingSort(R,`)
(2) return R

• CountingSort(R,`) sorts the strings in R by the symbols at position `
using counting sort (with ki replaced by Si[`]). The time complexity is
O(|R|+ σ).

• The stability of counting sort is essential.

Example 1.22: R = {cat, him, ham, bat}.

cat
him
ham
bat

=⇒

hi m
ha m
ca t
ba t

=⇒

h a m
c a t
b a t
h i m

=⇒

b at
c at
h am
h im

38

The algorithm assumes that all strings have the same length m, but it can
be modified to handle strings of different lengths (exercise).

Theorem 1.23: LSD radix sort sorts a set R of strings over the alphabet
[0..σ) in O(||R||+mσ) time, where ||R|| is the total length of the strings in
R and m is the length of the longest string in R.

• The weakness of LSD radix sort is that it uses Ω(||R||) time even when
L(R) is much smaller than ||R||.

• It is best suited for sorting short strings and integers.

39

MSD radix sort resembles string quicksort but partitions the strings into σ
parts instead of three parts.

Example 1.24: MSD radix sort partitioning.

al p habet
al i gnment
al l ocate
al g orithm
al t ernative
al i as
al t ernate
al l

=⇒

al g orithm
al i gnment
al i as
al l ocate
al l
al p habet
al t ernative
al t ernate

40

Algorithm 1.25: MSDRadixSort(R, `)
Input: (Multi)set R = {S1, S2, . . . , Sn} of strings over the alphabet [0..σ)

and the length ` of their common prefix.
Output: R in ascending lexicographical order.

(1) if |R| < σ then return StringQuicksort(R, `)
(2) R⊥ ← {S ∈ R | |S| = `}; R← R \R⊥
(3) (R0,R1, . . . ,Rσ−1)← CountingSort(R, `)
(4) for i← 0 to σ − 1 do Ri ←MSDRadixSort(Ri, `+ 1)
(5) return R⊥ · R0 · R1 · · ·Rσ−1

• Here CountingSort(R,`) not only sorts but also returns the partitioning
based on symbols at position `. The time complexity is still O(|R|+ σ).

• The recursive calls eventually lead to a large number of very small sets,
but counting sort needs Ω(σ) time no matter how small the set is. To
avoid the potentially high cost, the algorithm switches to string
quicksort for small sets.

41

Theorem 1.26: MSD radix sort sorts a set R of n strings over the
alphabet [0..σ) in O(L(R) + n logσ) time.

Proof. Consider a call processing a subset of size k ≥ σ:

• The time excluding the recursive call but including the call to counting
sort is O(k + σ) = O(k). The k symbols accessed here will not be
accessed again.

• At most lcp(S,R \ {S}) + 1 symbols in S will be accessed by the
algorithm. Thus the total time spent in this kind of calls is
O(L(R) + n).

This still leaves the time spent in the calls for a subsets of size k < σ, which
are handled by string quicksort. No string is included in two such calls.
Therefore, the total time over all calls is O(L(R) + n logσ).

�

• There exists a more complicated variant of MSD radix sort with time
complexity O(L(R) + n+ σ).

• Ω(L(R) + n) is a lower bound for any algorithm that must access
symbols one at a time.

• In practice, MSD radix sort is very fast, but it is sensitive to
implementation details.

42

