
String Mergesort

Standard comparison based sorting algorithms are not optimal for sorting
strings because of an imbalance between effort and result in a string
comparison: it can take a lot of time but the result is only a bit or a trit of
useful information.

String quicksort solves this problem by using symbol comparisons where the
constant time is in balance with the information value of the result.

String mergesort takes the opposite approach. It replaces a standard string
comparison with the operation LcpCompare(A,B, k):

• The return value is the pair (x, `), where x ∈ {<,=, >} indicates the
order, and ` = lcp(A,B), the length of the longest common prefix of
strings A and B.

• The input value k is the length of a known common prefix, i.e., a lower
bound on lcp(A,B). The comparison can skip the first k characters.

Any extra time spent in the comparison is balanced by the extra information
obtained in the form of the lcp value.
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The following result show how we can use the information from past
comparisons to obtain a lower bound or even the exact value for an lcp.

Lemma 1.27: Let A, B and C be strings.

(a) lcp(A,C) ≥ min{lcp(A,B), lcp(B,C)}.

(b) If A ≤ B ≤ C, then lcp(A,C) = min{lcp(A,B), lcp(B,C)}.

Proof. Assume ` = lcp(A,B) ≤ lcp(B,C). The opposite case
lcp(A,B) ≥ lcp(B,C) is symmetric.

(a) Now A[0..`) = B[0..`) = C[0..`) and thus lcp(A,C) ≥ `.

(b) Either |A| = ` or A[`] < B[`] ≤ C[`]. In either case, lcp(A,C) = `.

�
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It can also be possible to determine the order of two strings without
comparing them directly.

Lemma 1.28: Let A, B, B′ and C be strings such that A ≤ B ≤ C and
A ≤ B′ ≤ C.

(a) If lcp(A,B) > lcp(A,B′), then B < B′.

(b) If lcp(B,C) > lcp(B′, C), then B > B′.

Proof. We show (a); (b) is symmetric. Assume to the contrary that B ≥ B′.
Then by Lemma 1.27, lcp(A,B) = min{lcp(A,B′), lcp(B′, B)} ≤ lcp(A,B′),
which is a contradiction. �
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String mergesort has the same structure as the standard mergesort: sort the
first half and the second half separately, and then merge the results.

Algorithm 1.29: StringMergesort(R)
Input: Set R = {S1, S2, . . . , Sn} of strings.
Output: R sorted and augmented with lcp information.

(1) if |R| = 1 then return {(S1,0)}
(2) m← bn/2c
(3) P ← StringMergesort({S1, S2, . . . , Sm})
(4) Q ← StringMergesort({Sm+1, Sm+2, . . . , Sn})
(5) return StringMerge(P,Q)

The output is of the form

{(T1, `1), (T2, `2), . . . , (Tn, `n)}
where `i = lcp(Ti, Ti−1) for i > 1 and `1 = 0. In other words, `i = LCPR[i].

Thus we get not only the order of the strings but also a lot of information
about their common prefixes. The procedure StringMerge uses this
information effectively.
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Algorithm 1.30: StringMerge(P,Q)
Input: Sequences P =

(
(S1, k1), . . . , (Sm, km)

)
and Q =

(
(T1, `1), . . . , (Tn, `n)

)
Output: Merged sequence R

(1) R← ∅; i← 1; j ← 1
(2) while i ≤ m and j ≤ n do
(3) if ki > `j then append (Si, ki) to R; i← i+ 1
(4) else if `j > ki then append (Tj, `j) to R; j ← j + 1
(5) else // ki = `j
(6) (x, h)← LcpCompare(Si, Tj, ki)
(7) if x = ”<” then
(8) append (Si, ki) to R; i← i+ 1
(9) `j ← h

(10) else
(11) append (Tj, `j) to R; j ← j + 1
(12) ki ← h
(13) while i ≤ m do append (Si, ki) to R; i← i+ 1
(14) while j ≤ n do append (Tj, `j) to R; j ← j + 1
(15) return R
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Lemma 1.31: StringMerge performs the merging correctly.

Proof. We will show that the following invariant holds at the beginning of
each round in the loop on lines (2)–(12):

Let X be the last string appended to R (or ε if R = ∅). Then
ki = lcp(X,Si) and `j = lcp(X,Tj).

The invariant is clearly true in the beginning. We will show that the invariant
is maintained and the smaller string is chosen in each round of the loop.

• If ki > `j, then lcp(X,Si) > lcp(X,Tj) and thus

– Si < Tj by Lemma 1.28.

– lcp(Si, Tj) = lcp(X,Tj) because by Lemma 1.27
lcp(X,Tj) = min{lcp(X,Si), lcp(Si, Tj)}.

Hence, the algorithm chooses the smaller string and maintains the
invariant. The case `j > ki is symmetric.

• If ki = `j, then clearly lcp(Si, Tj) ≥ ki and the call to LcpCompare is safe,
and the smaller string is chosen. The update `j ← h or ki ← h maintains
the invariant. �
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Theorem 1.32: String mergesort sorts a set R of n strings in
O(L(R) + n logn) time.

Proof. If the calls to LcpCompare took constant time, the time complexity
would be O(n logn) by the same argument as with the standard mergesort.

Whenever LcpCompare makes more than one, say 1 + t symbol
comparisons, one of the lcp values stored with the strings increases by t.
Since the sum of the final lcp values is exactly L(R), the extra time spent in
LcpCompare is bounded by O(L(R)).

�

• Other comparison based sorting algorithms, for example heapsort and
insertion sort, can be adapted for strings using the lcp comparison
technique.
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String Binary Search

An ordered array is a simple static data structure supporting queries in
O(logn) time using binary search.

Algorithm 1.33: Binary search
Input: Ordered set R = {k1, k2, . . . , kn}, query value x.
Output: The number of elements in R that are smaller than x.

(1) left← 0; right← n+ 1 // final answer is in the range [left..right)
(2) while right− left > 1 do
(3) mid← left+ b(right− left)/2c
(4) if kmid < x then left← mid
(5) else right← mid
(6) return left

With strings as elements, however, the query time is

• O(m logn) in the worst case for a query string of length m

• O(m+ logn logσ n) on average for a random set of strings.
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We can use the lcp comparison technique to improve binary search for
strings. The following is a key result.

Lemma 1.34: Let A, B, B′ and C be strings such that A ≤ B ≤ C and
A ≤ B′ ≤ C. Then lcp(B,B′) ≥ lcp(A,C).

Proof. Let Bmin = min{B,B′} and Bmax = max{B,B′}. By Lemma 1.27,

lcp(A,C) = min(lcp(A,Bmax), lcp(Bmax, C))

≤ lcp(A,Bmax) = min(lcp(A,Bmin), lcp(Bmin, Bmax))

≤ lcp(Bmin, Bmax) = lcp(B,B′)

�
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During the binary search of P in {S1, S2, . . . , Sn}, the basic situation is the
following:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright, and we know that
Sleft ≤ P, Smid ≤ Sright.

• If we are using LcpCompare, we know lcp(Sleft, P ) and lcp(P, Sright).

By Lemmas 1.27 and 1.34,

lcp(P, Smid) ≥ lcp(Sleft, Sright) = min{lcp(Sleft, P ), lcp(P, Sright)}
Thus we can skip min{lcp(Sleft, P ), lcp(P, Sright)} first characters when
comparing P and Smid.
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Algorithm 1.35: String binary search (without precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n+ 1
(2) llcp← 0; rlcp← 0
(3) while right− left > 1 do
(4) mid← left+ b(right− left)/2c
(5) mlcp← min{llcp, rlcp}
(6) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(7) if x = “ < ” then left← mid; llcp← mclp
(8) else right← mid; rlcp← mclp
(9) return left

• The average case query time is now O(m+ logn).

• The worst case query time is still O(m logn).
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We can further improve string binary search using precomputed information
about the lcp’s between the strings in R.

Consider again the basic situation during string binary search:

• We want to compare P and Smid.

• We have already compared P against Sleft and Sright, and we know
lcp(Sleft, P ) and lcp(P, Sright).

The values left and right depend only on mid. In particular, they do not
depend on P . Thus, we can precompute and store the values

LLCP [mid] = lcp(Sleft, Smid)

RLCP [mid] = lcp(Smid, Sright)
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Now we know all lcp values between P , Sleft, Smid, Sright except lcp(P, Smid).
The following lemma shows how to utilize this.

Lemma 1.36: Let A, B, B′ and C be strings such that A ≤ B ≤ C and
A ≤ B′ ≤ C.
(a) If lcp(A,B) > lcp(A,B′), then B < B′ and lcp(B,B′) = lcp(A,B′).
(b) If lcp(A,B) < lcp(A,B′), then B > B′ and lcp(B,B′) = lcp(A,B).
(c) If lcp(B,C) > lcp(B′, C), then B > B′ and lcp(B,B′) = lcp(B′, C).
(d) If lcp(B,C) < lcp(B′, C), then B < B′ and lcp(B,B′) = lcp(B,C).
(e) If lcp(A,B) = lcp(A,B′) and lcp(B,C) = lcp(B′, C), then

lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}.

Proof. Cases (a)–(d) are symmetrical, we show (a). B < B′ follows from
Lemma 1.28. Then by Lemma 1.27, lcp(A,B′) = min{lcp(A,B), lcp(B,B′)}.
Since lcp(A,B′) < lcp(A,B), we must have lcp(A,B′) = lcp(B,B′).

In case (e), we use Lemma 1.27:

lcp(B,B′) ≥ min{lcp(A,B), lcp(A,B′)} = lcp(A,B)

lcp(B,B′) ≥ min{lcp(B,C), lcp(B′, C)} = lcp(B,C)

Thus lcp(B,B′) ≥ max{lcp(A,B), lcp(B,C)}. �
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Algorithm 1.37: String binary search (with precomputed lcps)
Input: Ordered string set R = {S1, S2, . . . , Sn}, arrays LLCP and RLCP,

query string P .
Output: The number of strings in R that are smaller than P .

(1) left← 0; right← n+ 1
(2) llcp← 0; rlcp← 0
(3) while right− left > 1 do
(4) mid← left+ b(right− left)/2c
(5) if LLCP [mid] > llcp then left← mid
(6) else if LLCP [mid] < llcp then right← mid; rlcp← LLCP [mid]
(7) else if RLCP [mid] > rlcp then right← mid
(8) else if RLCP [mid] < rlcp then left← mid; llcp← RLCP [mid]
(9) else

(10) mlcp← max{llcp, rlcp}
(11) (x,mlcp)← LcpCompare(Smid, P,mlcp)
(12) if x = “ < ” then left← mid; llcp← mclp
(13) else right← mid; rlcp← mclp
(14) return left
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Theorem 1.38: An ordered string set R = {S1, S2, . . . , Sn} can be
preprocessed in O(L(R)) time and O(n) space so that a binary search with a
query string P can be executed in O(|P |+ logn) time.

Proof. The values LLCP [mid] and RLCP [mid] can be computed in
O(lcp(Smid,R \ {Smid}) time. Thus the arrays LLCP and RLCP can be
computed in O(lcp(R)) = O(L(R)) time and stored in O(n) space.

The main while loop in Algorithm 1.37 is executed O(logn) times and
everything except LcpCompare on line (11) needs constant time.

If a given LcpCompare call performs t+ 1 symbol comparisons, mclp
increases by t on line (11). Then on lines (12)–(13), either llcp or rlcp
increases by at least t, since mlcp was max{llcp, rlcp} before LcpCompare.
Since llcp and rlcp never decrease and never grow larger than |P |, the total
number of extra symbol comparisons in LcpCompare during the binary
search is O(|P |). �
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