
String Binary Search Trees

Binary search can be seen as a search on an implicit binary search tree,
where the middle element is the root, the middle elements of the first and
second half are the children of the root, etc.. The string binary search
technique can be extended for arbitrary binary search trees.

• Let Sv be the string stored at a node v in a binary search tree. Let S<
and S> be the closest lexicographically smaller and larger strings stored
at ancestors of v.

• The comparison of a query string P and the string Sv is done the same
way as the comparison of P and Smid in string binary search. The roles
of Sleft and Sright are taken by S< and S>.

• If each node v stores the values lcp(S<, Sv) and lcp(Sv, S>), then a
search in a balanced search tree can be executed in O(|P |+ logn) time.
Other operations including insertions and deletions take O(|P |+ logn)
time too.

58

Hashing

Hashing is a powerful technique for dealing with strings based on mapping
each string to an integer using a hash function:

H : Σ∗ → [0..q) ⊂ N

The most common use of hashing is with hash tables. Hash tables come in
many flavors that can be used with strings as well as with any other type of
object with an appropriate hash function. A drawback of using a hash table
to store a set of strings is that they do not support lcp and prefix queries.

Hashing is also used in other situations, where one needs to check whether
two strings S and T are the same or not:

• If H(S) 6= H(T), then we must have S 6= T .

• If H(S) = H(T), then S = T and S 6= T are both possible.
If S 6= T , this is called a collision.

When used this way, the hash value is often called a fingerprint, and its
range [0..q) is typically large as it is not restricted by the hash table size.

59

Any good hash function must depend on all characters. Thus computing
H(S) needs Ω(|S|) time, which can defeat the advantages of hashing:

• A plain comparison of two strings is faster than computing the hashes.

• The main strength of hash tables is the support for constant time
insertions and deletions, but inserting a string S into a hash table needs
Ω(|S|) time when the hash computation time is included. Compare this
to the O(|S|) time for a trie under a constant alphabet and the
O(|S|+ logn) time for a ternary trie.

However, a hash table can still be competitive in practice. Furthermore,
there are situations, where a full computation of the hash function can be
avoided:

• A hash value can be computed once, stored, and used many times.

• Some hash functions can be computed more efficiently for a related set
of strings. An example is the Karp–Rabin hash function.

60

Definition 1.39: The Karp–Rabin hash function for a string
S = s0s1 . . . sm−1 is

H(S) = (s0r
m−1 + s1r

m−2 + · · ·+ sm−2r + sm−1) mod q

for some fixed positive integers r and q.

Lemma 1.40: For any two strings A and B,

H(AB) = (H(A) · r|B| +H(B)) mod q

H(B) = (H(AB)−H(A) · r|B|) mod q

Proof. Without the modulo operation, the result would be obvious. The
modulo does not interfere because of the rules of modular arithmetic:

(x+ y) mod q = ((x mod q) + (y mod q)) mod q

(xy) mod q = ((x mod q)(y mod q)) mod q

�

Thus we can quickly compute H(AB) from H(A) and H(B), and H(B) from
H(AB) and H(A). We will see applications of this later.

(The equation (H(A) · r|B|) mod q = (H(AB)−H(B)) mod q is not as useful
for computing H(A) because division is harder under modular arithmetic and
not even well-defined for all q and r.)

61

The parameters q and r have to be chosen with some care to ensure that
collisions are rare for any reasonable set of strings.

• The original choice is r = σ and q is a large prime.

• Another possibility is that q is a power of two and r is a small prime
(r = 37 has been suggested). This is faster in practice, because the
slow modulo operations can be replaced by bitwise shift operations. If
q = 2w, where w is the machine word size, the modulo operations can
be omitted completely.

• If q and r were both powers of two, then only the last d(log q)/ log re
characters of the string would affect the hash value.

• The hash function can be randomized by choosing q or r randomly.
Furthermore, we can change q or r if collisions are too frequent.

62

Automata

Finite automata are a well known way of representing sets of strings. In this
case, the set is often called a language.

A trie is a special type of an automaton.

• Trie is generally not a minimal automaton.

• Trie techniques including path compaction and ternary branching can
be applied to automata.

Example 1.41: Compacted minimal automaton for
R = {pot$, potato$, pottery$, tattoo$, tempo$}.

atpot

$

$

t

emp

atto
o

tery

63

Automata are much more powerful than tries in representing languages:

• Infinite languages

• Nondeterministic automata

• Even an acyclic, deterministic automaton can represent a language of
exponential size.

Automata do not support all operations of tries:

• Insertions and deletions

• Satellite data, i.e., data associated to each string.

64

2. Exact String Matching

Let T = T [0..n) be the text and P = P [0..m) the pattern. We say that P
occurs in T at position j if T [j..j +m) = P .

Example: P = aine occurs at position 6 in T = karjalainen.

In this part, we will describe algorithms that solve the following problem.

Problem 2.1: Given text T [0..n) and pattern P [0..m), report the first
position in T where P occurs, or n if P does not occur in T .

The algorithms can be easily modified to solve the following problems too.

• Existence: Is P a factor of T?

• Counting: Count the number of occurrences of P in T .

• Listing: Report all occurrences of P in T .

65

The naive, brute force algorithm compares P against T [0..m), then against
T [1..1 +m), then against T [2..2 +m) etc. until an occurrence is found or
the end of the text is reached.

Algorithm 2.2: Brute force
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) i← 0; j ← 0
(2) while i < m and j < n do
(3) if P [i] = T [j] then i← i+ 1; j ← j + 1
(4) else j ← j − i+ 1; i← 0
(5) if i = m then output j −m else output n

The worst case time complexity is O(mn). This happens, for example, when
P = am−1b = aaa..ab and T = an = aaaaaa..aa.

66

Knuth–Morris–Pratt

The Brute force algorithm forgets everything when it moves to the next
text position.

The Morris–Pratt (MP) algorithm remembers matches. It never goes back
to a text character that already matched.

The Knuth–Morris–Pratt (KMP) algorithm remembers mismatches too.

Example 2.3:
Brute force
ainaisesti-ainainen
ainai//nen (6 comp.)
/ainainen (1)
//ainainen (1)
ai//nainen (3)
/ainainen (1)
//ainainen (1)

Morris–Pratt
ainaisesti-ainainen
ainai//nen (6)

ai//nainen (1)
//ainainen (1)

Knuth–Morris–Pratt
ainaisesti-ainainen
ainai//nen (6)

//ainainen (1)

67

MP and KMP algorithms never go backwards in the text. When they
encounter a mismatch, they find another pattern position to compare
against the same text position. If the mismatch occurs at pattern position i,
then fail[i] is the next pattern position to compare.

The only difference between MP and KMP is how they compute the failure
function fail.

Algorithm 2.4: Knuth–Morris–Pratt / Morris–Pratt
Input: text T = T [0 . . . n), pattern P = P [0 . . .m)
Output: position of the first occurrence of P in T

(1) compute fail[0..m]
(2) i← 0; j ← 0
(3) while i < m and j < n do
(4) if i = −1 or P [i] = T [j] then i← i+ 1; j ← j + 1
(5) else i← fail[i]
(6) if i = m then output j −m else output n

• fail[i] = −1 means that there is no more pattern positions to compare
against this text positions and we should move to the next text
position.

• fail[m] is never needed here, but if we wanted to find all occurrences, it
would tell how to continue after a full match.

68

We will describe the MP failure function here. The KMP failure function is
left for the exercises.

• When the algorithm finds a mismatch between P [i] and T [j], we know
that P [0..i) = T [j − i..j).

• Now we want to find a new i′ < i such that P [0..i′) = T [j − i′..j).
Specifically, we want the largest such i′.

• This means that P [0..i′) = T [j − i′..j) = P [i− i′..i). In other words,
P [0..i′) is the longest proper border of P [0..i).

Example: ai is the longest proper border of ainai.

• Thus fail[i] is the length of the longest proper border of P [0..i).

• P [0..0) = ε has no proper border. We set fail[0] = −1.

69

Example 2.5: Let P = ainainen. i P [0..i) border fail[i]
0 ε – -1
1 a ε 0
2 ai ε 0
3 ain ε 0
4 aina a 1
5 ainai ai 2
6 ainain ain 3
7 ainaine ε 0
8 ainainen ε 0

The (K)MP algorithm operates like an automaton, since it never moves
backwards in the text. Indeed, it can be described by an automaton that
has a special failure transition, which is an ε-transition that can be taken
only when there is no other transition to take.

-1 1 2 3 4 5 6 7 80
a n a i ni e nΣ

70

An efficient algorithm for computing the failure function is very similar to
the search algorithm itself!

• In the MP algorithm, when we find a match P [i] = T [j], we know that
P [0..i] = T [j − i..j]. More specifically, P [0..i] is the longest prefix of P
that matches a suffix of T [0..j].

• Suppose T = #P [1..m), where # is a symbol that does not occur in P .
Finding a match P [i] = T [j], we know that P [0..i] is the longest prefix
of P that is a proper suffix of P [0..j]. Thus fail[j + 1] = i+ 1.

Algorithm 2.6: Morris–Pratt failure function computation
Input: pattern P = P [0 . . .m)
Output: array fail[0..m] for P

(1) i← −1; j ← 0; fail[j]← i
(2) while j < m do
(3) if i = −1 or P [i] = P [j] then i← i+ 1; j ← j + 1; fail[j]← i
(4) else i← fail[i]
(5) output fail

• When the algorithm reads fail[i] on line 4, fail[i] has already been
computed.

71

Theorem 2.7: Algorithms MP and KMP preprocess a pattern in time O(m)
and then search the text in time O(n).

Proof. We show that the text search requires O(n) time. Exactly the same
argument shows that pattern preprocessing needs O(m) time.

It is sufficient to count the number of comparisons that the algorithms
make. After each comparison P [i] = T [j], one of the two conditional
branches is executed:

then Here j is incremented. Since j never decreases, this branch can be
taken at most n+ 1 times.

else Here i decreases since fail[i] < i. Since i only increases in the
then-branch, this branch cannot be taken more often than the
then-branch.

�

72

